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Abstract
The multiplex network has attracted wide attention because it can better describe the various 

relationships in the real world, and the duplex network is a special two-layer form of it. The purpose 
of this research focuses on introducing new entropy-based measures for multiplex network, especially 
duplex network. The new measure called Interactive entropy in duplex network (IE) is based on 
information entropy, a key concept of information theory. It can be applied to various types of 
multiplex networks to quantify the differences between the layers of inside duplex network.
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1. Introduction
There is a great growth in the studies of 

complex networks in recent years. While the need 
to better simulate the real world is increasing 
faster than ever before, the existing single-
layer network model (Albert & Barabási, 2002; 
Barabási & Albert, 1999; Strogatz, 2001) has 
not been able to adapt to this change. Therefore, 
multilayer networks (Boccaletti et al., 2014; de 
Domenico et al., 2013) have attracted more and 
more attention, especially a simplified version 
called multiplex network (Battiston, Nicosia, & 
Latora, 2014; Solé-Ribalta, de Domenico, Gómez, 
& Arenas, 2014), where all the nodes are the same 
in different layers.

A multiplex network is a system formed by 
N nodes and M layers of interactions where each 
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node belongs to the M layers at the same time. 
Each layer α is formed by a network Gα. Now we 
focus on the two-layer multiplex network, which 
is called as duplex network. This is a reliable and 
useful way to simplify the whole complex system.

Viewing the ne twork sys tem f rom the 
perspective of information and constructing a 
measure that contains the overall information 
of the network are the key issues in network 
information theory (Shi, Chen, Long, Wang, & 
Pan, 2019). The information theory leaves us with 
many tools to measure the amount of information, 
among which the most important one is entropy 
(Shannon, 1948). It has also been successfully 
introduced into the field of network science, 
where many different types of network entropy 
have been introduced (Anand & Bianconi, 2009; 
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De Domenico & Biamonte, 2016; Zhang, Li, & 
Deng, 2018). 

In defining the various concepts of entropy, 
the most significant thing is to find the right 
probability distribution. The remaining degree 
distribution (Solé & Valverde, 2004) is used to 
form the entropy and mutual information, while 
the degree distribution (Wang, Tang, Guo, & Xiu, 
2006) is used to form another kind of entropy 
to study the robustness of networks to random 
failures. There are several common types of 
network entropy (Cai, Du, & Feldman, 2014; 
Cai, Du, & Ren, 2011; Wu, Tan, Deng, & Zhu, 
2007), and some scholars have conducted in-
depth research on their similarities and differences 
(Cai, Cui, & Stanley, 2017). These entropies are 
all built to quantify network information based 
on the distribution of a certain characteristic of 
the network. Also, it is worth mentioning that the 
previous scholars are all defined in the context 
of single layer complex network and are proven 
effective to capture the uncertainty of networks.

In this research, we focus on some entropy-
based measures that are suitable for duplex 
networks aiming to characterize the structure 
and functional features of the duplex networks. 
Initially, we introduce one entropy-based measure 
based on the degree distribution to reflect the 
characteristics of duplex network. Then we verify 
the validity of these measures in various types of 
duplex networks. Finally, we compare our measure 
with previous ones and expand the probability set 
used in it.

2. Methodology
In a single layer network, the degree distribution is

 p(k)= Nk

N
 (1)

where Nk is the number of nodes with degree 
k in the network. The degree distribution here 
represents the probability of taking a node 
arbitrarily in a certain network, whose degree 
happens to be k. It can be an average measure 
of a network’s heterogeneity. It is suitable for 
single layer networks. Since the probability 
distribution used here when calculating entropy 
is degree distribution, and the degree distribution 
is more suitable for unweighted networks (Zhao, 
Rousseau, & Ye, 2011; Zhao & Ye, 2012), the 
entropy of the degree distribution is also more 
suitable for unweighted networks.

In order to make it more appropriate for 
multiplex network, we extend the definition via 
simplifying the multiplex network into several 
two-layer networks. Follow the definition of the 
previous work (Zhang & Ye, 2020), a duplex network 
is defined as a multiplex network composed of two 
layers, where there are the same N nodes in each layer.

The degree distribution of layer α (α = 1,2) is p(k)[α]

 p(k)[α ] = N
[α ]
k

N
 (2)

where N k
 [α] is the number of nodes with degree k 

in the network.
Definition: Interactive entropy in duplex 

network (IE) is.

 IE(α =1α = 2) =
k=1

N−1

∑p k( )[1] i log
p k( )[1]

p k( )[2]
 (3)

In information theory, relative entropy is a 
measure of the difference between two probability 
distributions (Kullback & Leibler, 1951). We use 
the same concept to define the interactive entropy 
in a duplex network.
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When presenting the results later, we choose 
2 as the base of the above logarithmic function, 
where the base can also be e or 10. When the base 
is 2, the value of the distribution entropy can be 
regarded as the minimum bits required to encode 
the information in each layer.

Some properties of IE can be derived. First, 
if the degree distribution of the two layers in 
the duplex network is exactly the same, then the 
interactive entropy is equal to zero. Second, as 
shown in Eq.(3), IE is asymmetric. The same 
conclusion can be drawn from the concept of 
relative entropy in information theory, i.e., 
the value of interactive entropy equals to the 
information loss generated when one layer is used 
to fit another layer in the duplex network.

In order to better explain the concept of IE, we 
introduce a simple example. In Figure 1, Layer 
A and B form a duplex network when combined. 
The number on the node indicates the degree 
of the node. It can be easily observed from the 
figure that there are two types of nodes in layer 
A, namely nodes whose degree are1 and 2, while 
there are three types of nodes in layer B, which 
are nodes with degree 1, 2, 3.

It is also worth noting that when calculating 
interactive entropy, if any p(k)[1] = 0 or p(k)[2] = 
0, then a very small amount ε should be assigned 
to these p(k)[1], p(k)[2], such as ε = 1e-5. The 
sum of the processed degree distributions is not 
equal to 1, so we normalize the newly obtained 
distribution to obtain p’(k) [1] and p’(k) [2]. In this 
way, the interactive entropy of the two can be 
easily calculated. The same example could be 
used to clarify this. In Figure 1, p(k)[A] ={p(1) = 
0.5, p(2) = 0.5, p(3) = 0} and p(k)[B] ={ p(1) = 0.25, 
p(2) = 0.5, p(3) = 0.25}. After the above progress,  
p’(k)[A] ={ p’ (1) = 0.5/(1+ ε), p’ (2) = 0.5/(1+ ε),  
p’ (3) = ε/(1+ ε)}. Interactive entropy, which 
means that the difference between network A and 
B can be calculated, and IE(α=A||α=B) is 0.4998.

3. Studies
The interactive entropy can be utilized in 

a large variety of networks. These networks 
can be either weighted or unweighted from the 
perspective of network weight, and can be either 
information networks or social networks from 
the perspective of network type. Here are a few 
examples to demonstrate the effectiveness of 

Figure 1.   An Example of IE



34

Journal of Library and Information Studies 18:2 (December 2020)

interactive entropy in distinguishing the difference 
in degree-based distribution between different 
layers of duplex network.

3.1 Data

3.1.1 The information network of co-word in 
information science and library science (ICW)

ICW is a three-layer multiplex network and 
can be regarded as three duplex networks when 
matching two of the three layers together. The 
layers represent the co-word networks of the 
extracted from the field of information science 
and library science in 2012, 2015 and 2018. The 
nodes represent the keywords in the publications 
and the edges represent the number of times that 
two keywords occurring at the same time in one 
publication. By definition, the nodes of each 
layer in a multiplex network should be consistent. 
Therefore, fifty of the most frequently-used words 
in three years are selected from the network 
required in this research.
3.1.2 Star war social duplex network (SWS)

SWS is a duplex network drawn from the 
classic movie “Star war.” Its nodes represent 
movie characters, and edges represent their 

interactive relationships. The interaction relations 
referred to by the edges in the two layers are 
interactions and mentions. The former represents 
the number of conversations between the two 
characters, and the latter represents the number of 
times the two characters are jointly mentioned.
3.1.3 Kapferer tailor shop duplex network (KTS)

KTS is a duplex network firstly observed by 
Kapferer (1972). The nodes represent different 
people, and the edges represent relationships 
between them. The network is unweighted, and 
an edge means that such a work- and assistance-
related relationship exists between two people. 
This relationship was recorded in the Kapferer’s 
two visits during which there was a strike. We call 
these two layers “before” and “after.”

After the networks are simply introduced, 
their main network parameters and indicators are 
computed as shown in Table 1.

3.2 Results and Analysis of IE

Interactive entropy is characterized by the 
degree distribution between the two layers of a 
duplex network to measure the difference of the 
network. In order to see the degree distribution of 

Table 1.   Basic Parameters of Three Networks

Network Type Weight Layer Density Diameter Average 
degree

Average  
weighted degree

ICW information
network 

weighted 2012 0.261 3 12.8 41.0

2015 0.382 3 18.7 79.6

2018 0.370 3 18.1 71.2

SWS social
network

weighted interaction 0.063 6 7.0 26.0

mention 0.129 5 14.5 97.9

KTS social
network

unweighted before 0.213 4 8.1 16.2

after 0.301 3 11.4 22.9
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each duplex/multiplex network and its difference 
more clearly, Figure 2 is proposed, in which the 
horizontal axis of the graph is degree count, and 
the vertical axis is the probability of a certain 
degree count. 

In the ICW network, the interactive entropy 
values are as follows: IE(12||15) = 3.69, IE(15||18) 
= 2.97, IE(12||18) = 3.04. It can be seen that in 
the two-layer network formed by the three-layer 
network in pairs, the degree distribution difference 
between the two-layer network formed in 12 and 
15 years is the largest, and the difference between 
15 and 18 years is the smallest. This is consistent 
with the difference in degree distribution between 
layers that can be directly observed in Figure 2.

A s f o r t h e S W S n e t w o r k, t h e d e g r e e 
distribution curve of the interaction layer is 
concentrated on the left side of the figure, and that 
of the mentioned layer is more biased to the right 
side. In the SWS network, the value of interactive 
entropy is as follows: IE(mention||interaction) = 2.70.

In the KTS network, the degree distribution 
curve of the “before” period is more to the right, 
and that of the “after” period is more to the left. 
Intuitively, the difference between the two is huge, 
so the corresponding interactive entropy should 
also be relatively big. The value of interactive 
entropy is IE(before||after) = 4.43.

4. Discussion
Now we discuss more issues and extend a 

comparison on the differences between IE and 
existing entropy-type measures.

4.1 Entropy using other distribution

As mentioned earlier, when calculating 
interactive entropy, it is crucial to choose a 

reasonable distribution that can represent the 
overall properties of the network. Since the 
degree of a node is only related to the number of 
neighbors it has, without considering the weight 
of the edge, now the weighted network has 
become more and more commonly used when 
simulating various relationships in the real world. 
So we also consider improving it by introducing 
another degree distribution-h-degree distribution. 
H-degree is first proposed by Zhao et al. (2011) in 
the network, it is an efficacious method to measure 
the importance of nodes in weighted network. 
The h-degree of a node is the number dh if this 
node has at least dh links with other nodes and the 
strength of each of these links is greater than or 
equal to dh. Correspondingly, the above formula 
could be modified as below.

The h-degree distribution of layer α (α = 1,2) 
is p(k)H

[α]

 p(k)H
[α ] =

Nk
[α ]

N
 (4)

where Nk
[α] is the number of nodes with 

h-degree k in the network.
Interactive entropy using h-degree distribution 

in duplex network is

 IEH (α =1α = 2) =
k=1

N−1

∑p k( )H
[1]

i log
p k( )H

[1]

p k( )H
[2]  (5)

I t can be ca lcu la ted tha t the h-degree 
distribution entropy of the three layers is 1.37, 
1.90, 1.86, and the interactive entropy using 
h-degree distribution is IEH(12||15) = 0.86, IEH 
(15||18) = 0.16, IEH(12||18) = 0.54. While the 
degree distribution entropy of the three layers is 
3.92, 4.35 and 4.09, and the interactive entropy is 
IE(12||15) = 3.69, IE(15||18) = 2.97, IE(12||18) = 
3.04. The trends are the same. 
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Figure 2.   Degree Distribution Diagram of the Example Networks
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The above demonstrated the use of other 
distributions in our definition of interactive 
entropy. We can also examine other entropy ideas 
and what distribution they use. Comparing with 
the entropy proposed by Battiston, Nicosia, and 
Latora (2014), the IE belongs to the interactive 
entropy, which means it pays more attention to 
overall interaction between layers, rather than 
different states of nodes or edges between layers. 
In their definition, the entropy of the multiplex 
degree is a measure of node properties. It uses 
the distribution of the degree of node i among the 
various layers. In this distribution, the denominator 
is the sum of the degree of the node in each layer, 
and the numerator is the degree of the node in a 
certain layer. Therefore, the direction of the result 
is whether the degree of a certain node is evenly 
distributed among the layers. If it is uniform, the 
entropy takes the maximum value; if not and the 
distribution is extremely uneven, for example, 
there is only one non-zero value in a certain layer, 
this entropy takes the minimum value. This idea 
is also a good way to use entropy to measure 
multiplex networks, but it is different from our 
implementation path. We measure the overall 
interaction relationship using the distribution that 
can better represent the entire network, such as 
the degree distribution and h-degree distribution, 
and other entropy may be more specific to specific 
nodes and edges using the degree of a certain 
node/edge among layers. 

4.2 Layer similarity and interactive entropy in 
duplex network

For comparing layers in multiplex networks, 
especially in duplex networks, there are already 
some indicators, such as the layer similarity 

(Zhang & Ye, 2020). We can compare the 
interactive entropy and the layer similarity. In its 
definition, for each layer, there is an adjacency 
matrix A[α]=aij, where a[α ] 

ij  represents the weight of 
the edge connecting node i and node j.

The relationship that node i has with the other 
nodes can be represented by a vector

 k[α ] 
i  =[ a[α] 

i1 ，a[α] 
i2 ，a[α] 

i3 ，......，a[α] 
in ] (6)

The similarity of a certain node i could be: 

 NSimi
[1,2] =

ki
[1]ki

[2]

| ki
[1] || ki

[2] |
 (7)

The layer similarity could be

 LSim[1,2] =
NSimi

[1,2]

i=1

n
∑

n
 (8)

It can be concluded directly from the formula 
that the two indicators have a certain consistency. 
Yet, they have their own emphasis. The layer 
similarity starts from the difference between 
different layers of the same node in the duplex 
network, and the average of all node similarity 
is the layer similarity. Interactive entropy 
calculates the difference between the two-degree 
distributions of the two layers. It can be concluded 
that the former is from individual to the whole, 
while the latter is always focusing on the whole. 
In clarifying the difference between the duplex 
network, there are both differences and connections.

In the ICW network, the results of layer 
similarity are as follows: LSim [12,15] = 0.5311，
LSim [15,18] = 0.6070，LSim [12,18] = 0.4570. 
And the interactive entropy is: IE(12||15) = 3.69，
IE(15||18) = 2.97，IE(12||18) = 3.04. From the 
numerical values and its corresponding Figure 3, 
it can be seen that the trends of the two indicators 
are also slightly different. IE and LSim both 
show the highest similarity of the duplex network 
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of 15 and 18, but LSim shows the similarity of 
12 and 15 is in the middle, while IE shows the 
similarity of 12 and 18 is in the middle. The 
conclusion drawn by the example is the same as 
the conclusion directly drawn by the formula.

There is one thing worth noting is that the 
values of these two indicators are opposite, 
which means the larger the interactive entropy, 
the greater the difference between the layers; 
the greater the similarity between the layers, the 
smaller the difference between the layers.

5. Conclusion
In this paper, based on the degree distribution 

of network, a new measure called interactive 
entropy (IE) of duplex networks is proposed. It 
can analyze the difference in degree distribution 
between layers, which is a form of interaction 
between layers. Subsequently, empirical studies 
reveal and verify the feasibility of this method. 
The types of test data set are rich and diverse, 
including not only weighted networks but also 
unweighted ones, and not only information 
networks but also social networks. Finally, 

some discussions are made to extend the degree 
distribution used in the original context to 
the h-degree distribution, and to compare the 
similarities and differences between the interactive 
entropy and the existing measures.

At present, IE is only limited to duplex 
networks. Their variations for multiplex networks 
could be explored and extended in the future.
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交互作用熵：量化雙層網絡交互作用的新測度

Quantifying Interactions between Layers in Duplex Networks 
Using Interactive Entropy

張家榕1,2　葉　鷹1,2

Ronda J. Zhang1,2, Fred Y. Ye1,2

摘　要

多層網絡因其能夠很好地描述現實世界中的各種關係而廣受關注，而雙層網絡是多層

網絡的特殊形式。本研究的目的在於引入一種新的基於熵的針對多層網絡，特別是雙層網

絡的測度。這種新的測度指標基於資訊論中的關鍵概念——資訊熵，稱作交互作用熵，可

應用於各種類型的多層網絡以量化其中雙層之間的差異。

關鍵字： 多層網絡、雙層網絡、交互作用熵
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