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Abstract

The multiplex network has attracted wide attention because it can better describe the various
relationships in the real world, and the duplex network is a special two-layer form of it. The purpose
of this research focuses on introducing new entropy-based measures for multiplex network, especially
duplex network. The new measure called Interactive entropy in duplex network (IE) is based on
information entropy, a key concept of information theory. It can be applied to various types of
multiplex networks to quantify the differences between the layers of inside duplex network.
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1. Introduction

There is a great growth in the studies of
complex networks in recent years. While the need
to better simulate the real world is increasing
faster than ever before, the existing single-
layer network model (Albert & Barabdsi, 2002;
Barabdsi & Albert, 1999; Strogatz, 2001) has
not been able to adapt to this change. Therefore,
multilayer networks (Boccaletti et al., 2014; de
Domenico et al., 2013) have attracted more and
more attention, especially a simplified version
called multiplex network (Battiston, Nicosia, &
Latora, 2014; Solé-Ribalta, de Domenico, Gémez,
& Arenas, 2014), where all the nodes are the same
in different layers.

A multiplex network is a system formed by

N nodes and M layers of interactions where each

node belongs to the M layers at the same time.
Each layer «a is formed by a network G,. Now we
focus on the two-layer multiplex network, which
is called as duplex network. This is a reliable and
useful way to simplify the whole complex system.

Viewing the network system from the
perspective of information and constructing a
measure that contains the overall information
of the network are the key issues in network
information theory (Shi, Chen, Long, Wang, &
Pan, 2019). The information theory leaves us with
many tools to measure the amount of information,
among which the most important one is entropy
(Shannon, 1948). It has also been successfully
introduced into the field of network science,
where many different types of network entropy
have been introduced (Anand & Bianconi, 2009;
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De Domenico & Biamonte, 2016; Zhang, Li, &
Deng, 2018).

In defining the various concepts of entropy,
the most significant thing is to find the right
probability distribution. The remaining degree
distribution (Solé & Valverde, 2004) is used to
form the entropy and mutual information, while
the degree distribution (Wang, Tang, Guo, & Xiu,
20006) is used to form another kind of entropy
to study the robustness of networks to random
failures. There are several common types of
network entropy (Cai, Du, & Feldman, 2014;
Cai, Du, & Ren, 2011; Wu, Tan, Deng, & Zhu,
2007), and some scholars have conducted in-
depth research on their similarities and differences
(Cai, Cui, & Stanley, 2017). These entropies are
all built to quantify network information based
on the distribution of a certain characteristic of
the network. Also, it is worth mentioning that the
previous scholars are all defined in the context
of single layer complex network and are proven
effective to capture the uncertainty of networks.

In this research, we focus on some entropy-
based measures that are suitable for duplex
networks aiming to characterize the structure
and functional features of the duplex networks.
Initially, we introduce one entropy-based measure
based on the degree distribution to reflect the
characteristics of duplex network. Then we verify
the validity of these measures in various types of
duplex networks. Finally, we compare our measure
with previous ones and expand the probability set

used in it.

2. Methodology

In a single layer network, the degree distribution is
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where N, is the number of nodes with degree
k in the network. The degree distribution here
represents the probability of taking a node
arbitrarily in a certain network, whose degree
happens to be k. It can be an average measure
of a network’s heterogeneity. It is suitable for
single layer networks. Since the probability
distribution used here when calculating entropy
is degree distribution, and the degree distribution
is more suitable for unweighted networks (Zhao,
Rousseau, & Ye, 2011; Zhao & Ye, 2012), the
entropy of the degree distribution is also more
suitable for unweighted networks.

In order to make it more appropriate for
multiplex network, we extend the definition via
simplifying the multiplex network into several
two-layer networks. Follow the definition of the
previous work (Zhang & Ye, 2020), a duplex network
is defined as a multiplex network composed of two
layers, where there are the same /N nodes in each layer.

The degree distribution of layer a (& = 1,2) is p(k)"
N
N

where N ,'“is the number of nodes with degree k

p(k) = 2)

in the network.
Definition: Interactive entropy in duplex
network (IE) is.

- [ P( )[1]
E(@=1]la=2)=Yp(k) +log=——7 (3)
k=1 p(k)

In information theory, relative entropy is a
measure of the difference between two probability
distributions (Kullback & Leibler, 1951). We use
the same concept to define the interactive entropy

in a duplex network.
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When presenting the results later, we choose
2 as the base of the above logarithmic function,
where the base can also be e or 10. When the base
is 2, the value of the distribution entropy can be
regarded as the minimum bits required to encode
the information in each layer.

Some properties of IE can be derived. First,
if the degree distribution of the two layers in
the duplex network is exactly the same, then the
interactive entropy is equal to zero. Second, as
shown in Eq.(3), IE is asymmetric. The same
conclusion can be drawn from the concept of
relative entropy in information theory, i.e.,
the value of interactive entropy equals to the
information loss generated when one layer is used
to fit another layer in the duplex network.

In order to better explain the concept of IE, we
introduce a simple example. In Figure 1, Layer
A and B form a duplex network when combined.
The number on the node indicates the degree
of the node. It can be easily observed from the
figure that there are two types of nodes in layer
A, namely nodes whose degree arel and 2, while
there are three types of nodes in layer B, which

are nodes with degree 1,2, 3.

Layer A

Layer B

It is also worth noting that when calculating
interactive entropy, if any p(k)""’= 0 or p(k)* =
0, then a very small amount ¢ should be assigned
to these p(k)!", p(k)””’, such as € = le-5. The
sum of the processed degree distributions is not
equal to 1, so we normalize the newly obtained
distribution to obtain p’(k) 1 and p’(k) I Tn this
way, the interactive entropy of the two can be
easily calculated. The same example could be
used to clarify this. In Figure 1, p(k)™ ={p(1) =
0.5,p(2) =0.5, p(3) =0} and p(k)™ ={ p(1) =0.25,
p(2)=0.5,p(3) = 0.25}. After the above progress,
p (k)Y ={ p’ (1) = 05/(1+ &), p’ (2) = 0.5/(1+ €),
p’ (3) = €/(1+ &)}. Interactive entropy, which
means that the difference between network A and
B can be calculated, and IE(a=Alla=B) is 0.4998.

3. Studies

The interactive entropy can be utilized in
a large variety of networks. These networks
can be either weighted or unweighted from the
perspective of network weight, and can be either
information networks or social networks from
the perspective of network type. Here are a few

examples to demonstrate the effectiveness of

&)

@ &> LayerA
)
(&)
2] = Layer B
Duplex Network

Figure 1. An Example of IE
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interactive entropy in distinguishing the difference
in degree-based distribution between different
layers of duplex network.

3.1 Data

3.1.1 The information network of co-word in
information science and library science (ICW)
ICW is a three-layer multiplex network and
can be regarded as three duplex networks when
matching two of the three layers together. The
layers represent the co-word networks of the
extracted from the field of information science
and library science in 2012, 2015 and 2018. The
nodes represent the keywords in the publications
and the edges represent the number of times that
two keywords occurring at the same time in one
publication. By definition, the nodes of each
layer in a multiplex network should be consistent.
Therefore, fifty of the most frequently-used words
in three years are selected from the network
required in this research.
3.1.2 Star war social duplex network (SWS)
SWS is a duplex network drawn from the
classic movie “Star war.” Its nodes represent

movie characters, and edges represent their

interactive relationships. The interaction relations
referred to by the edges in the two layers are
interactions and mentions. The former represents
the number of conversations between the two
characters, and the latter represents the number of
times the two characters are jointly mentioned.
3.1.3 Kapferer tailor shop duplex network (KTS)

KTS is a duplex network firstly observed by
Kapferer (1972). The nodes represent different
people, and the edges represent relationships
between them. The network is unweighted, and
an edge means that such a work- and assistance-
related relationship exists between two people.
This relationship was recorded in the Kapferer’s
two visits during which there was a strike. We call
these two layers “before” and “after.”

After the networks are simply introduced,
their main network parameters and indicators are

computed as shown in Table 1.

3.2 Results and Analysis of IE

Interactive entropy is characterized by the
degree distribution between the two layers of a
duplex network to measure the difference of the

network. In order to see the degree distribution of

Table 1. Basic Parameters of Three Networks

Network Type Weight Layer Density Diameter Ad\;rrig: weiglzzgangree

ICW information weighted 2012 0.261 3 12.8 41.0
network 2015 0382 3 187 796

2018 0.370 3 18.1 71.2

SWS social weighted interaction ~ 0.063 6 70 26.0
network mention  0.129 5 14.5 979

KTS social unweighted before 0.213 4 8.1 16.2
network after 0.301 3 114 229
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each duplex/multiplex network and its difference
more clearly, Figure 2 is proposed, in which the
horizontal axis of the graph is degree count, and
the vertical axis is the probability of a certain
degree count.

In the ICW network, the interactive entropy
values are as follows: IE(12I115) = 3.69, IE(15I118)
=297, IE(12l118) = 3.04. It can be seen that in
the two-layer network formed by the three-layer
network in pairs, the degree distribution difference
between the two-layer network formed in 12 and
15 years is the largest, and the difference between
15 and 18 years is the smallest. This is consistent
with the difference in degree distribution between
layers that can be directly observed in Figure 2.

As for the SWS network, the degree
distribution curve of the interaction layer is
concentrated on the left side of the figure, and that
of the mentioned layer is more biased to the right
side. In the SWS network, the value of interactive
entropy is as follows: IE(mentionllinteraction) = 2.70.

In the KTS network, the degree distribution
curve of the “before” period is more to the right,
and that of the “after” period is more to the left.
Intuitively, the difference between the two is huge,
so the corresponding interactive entropy should
also be relatively big. The value of interactive
entropy is IE(beforellafter) = 4.43.

4. Discussion

Now we discuss more issues and extend a
comparison on the differences between IE and

existing entropy-type measures.

4.1 Entropy using other distribution

As mentioned earlier, when calculating

interactive entropy, it is crucial to choose a
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reasonable distribution that can represent the
overall properties of the network. Since the
degree of a node is only related to the number of
neighbors it has, without considering the weight
of the edge, now the weighted network has
become more and more commonly used when
simulating various relationships in the real world.
So we also consider improving it by introducing
another degree distribution-s-degree distribution.
H-degree is first proposed by Zhao et al. (2011) in
the network, it is an efficacious method to measure
the importance of nodes in weighted network.
The h-degree of a node is the number d,, if this
node has at least d, links with other nodes and the
strength of each of these links is greater than or
equal to d,. Correspondingly, the above formula
could be modified as below.

The h-degree distribution of layer a (o = 1,2)
is p(k); "
N,
N

where N, is the number of nodes with

plk)y! = 4

h-degree k in the network.
Interactive entropy using h-degree distribution
in duplex network is

m

p(k),

21

rlk),

N-1 i

IEH(a=1||a=2)=2p(k)H «log

k=1

(&)

It can be calculated that the h-degree
distribution entropy of the three layers is 1.37,
1.90, 1.86, and the interactive entropy using
h-degree distribution is IE,(121115) = 0.86, IE,
(15118) = 0.16, IE,(121118) = 0.54. While the
degree distribution entropy of the three layers is
3.92,4.35 and 4.09, and the interactive entropy is
IE(121115) = 3.69, IE(151118) = 2.97, IE(12Il18) =
3.04. The trends are the same.
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The above demonstrated the use of other
distributions in our definition of interactive
entropy. We can also examine other entropy ideas
and what distribution they use. Comparing with
the entropy proposed by Battiston, Nicosia, and
Latora (2014), the IE belongs to the interactive
entropy, which means it pays more attention to
overall interaction between layers, rather than
different states of nodes or edges between layers.
In their definition, the entropy of the multiplex
degree is a measure of node properties. It uses
the distribution of the degree of node i among the
various layers. In this distribution, the denominator
is the sum of the degree of the node in each layer,
and the numerator is the degree of the node in a
certain layer. Therefore, the direction of the result
is whether the degree of a certain node is evenly
distributed among the layers. If it is uniform, the
entropy takes the maximum value; if not and the
distribution is extremely uneven, for example,
there is only one non-zero value in a certain layer,
this entropy takes the minimum value. This idea
is also a good way to use entropy to measure
multiplex networks, but it is different from our
implementation path. We measure the overall
interaction relationship using the distribution that
can better represent the entire network, such as
the degree distribution and h-degree distribution,
and other entropy may be more specific to specific
nodes and edges using the degree of a certain

node/edge among layers.

4.2 Layer similarity and interactive entropy in
duplex network
For comparing layers in multiplex networks,

especially in duplex networks, there are already

some indicators, such as the layer similarity
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(Zhang & Ye, 2020). We can compare the
interactive entropy and the layer similarity. In its
definition, for each layer, there is an adjacency
matrix A'”'=a;, where aj’ represents the weight of
the edge connecting node i and node j.

The relationship that node i has with the other

nodes can be represented by a vector

K =[d, a3, af’, .. , ah] (6)
The similarity of a certain node i could be:
Kg
o2 K
NSim; "~ = ] (7
The layer similarity could be
" Fal1:2]
Lsint® = 251 ®)

n

It can be concluded directly from the formula
that the two indicators have a certain consistency.
Yet, they have their own emphasis. The layer
similarity starts from the difference between
different layers of the same node in the duplex
network, and the average of all node similarity
is the layer similarity. Interactive entropy
calculates the difference between the two-degree
distributions of the two layers. It can be concluded
that the former is from individual to the whole,
while the latter is always focusing on the whole.
In clarifying the difference between the duplex
network, there are both differences and connections.

In the ICW network, the results of layer
similarity are as follows: LSim [12,15] = 0.5311,
LSim [15,18] = 0.6070, LSim [12,18] = 0.4570.
And the interactive entropy is: IE(121115) = 3.69,
IE(151118) = 2.97, IE(12Il18) = 3.04. From the
numerical values and its corresponding Figure 3,
it can be seen that the trends of the two indicators
are also slightly different. IE and LSim both
show the highest similarity of the duplex network
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Figure 3. The Comparation between LSim and IE

of 15 and 18, but LSim shows the similarity of
12 and 15 is in the middle, while IE shows the
similarity of 12 and 18 is in the middle. The
conclusion drawn by the example is the same as
the conclusion directly drawn by the formula.
There is one thing worth noting is that the
values of these two indicators are opposite,
which means the larger the interactive entropy,
the greater the difference between the layers;
the greater the similarity between the layers, the

smaller the difference between the layers.

5. Conclusion

In this paper, based on the degree distribution
of network, a new measure called interactive
entropy (IE) of duplex networks is proposed. It
can analyze the difference in degree distribution
between layers, which is a form of interaction
between layers. Subsequently, empirical studies
reveal and verify the feasibility of this method.
The types of test data set are rich and diverse,
including not only weighted networks but also
unweighted ones, and not only information

networks but also social networks. Finally,
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some discussions are made to extend the degree
distribution used in the original context to
the h-degree distribution, and to compare the
similarities and differences between the interactive
entropy and the existing measures.

At present, IE is only limited to duplex
networks. Their variations for multiplex networks

could be explored and extended in the future.
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