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Abstract

Introduction. Notwithstanding the growing interest in employing electroencephalography (EEG)
for web search research, studies presently being conducted continue to grapple with significant issues,
namely, small sample sizes, variability in methodology, and limited generalisability. This systematic
review seeks to address these particular issues by describing how EEG has been used in this field of
research, addressing sample sizes, active authors, methodologies, and limitations.

Method. This systematic review employs the PRISMA framework to analyse the application
of EEG in web search studies, focusing on sample sizes, methodologies, and challenges faced by
researchers. A comprehensive search was conducted across multiple academic databases to identify
relevant studies.

Results. Findings indicate that typical sample sizes in EEG studies range from 10 to 24
participants, largely due to resource constraints. Researchers encounter challenges such as biological
artefacts affecting data quality, the complexity of emotional and cognitive states, and limitations
in generalisability due to small sample sizes. Additionally, issues related to equipment quality and
methodological consistency further complicate EEG research in this domain.

Conclusions. The application of EEG in web search research holds significant potential for
enhancing our understanding of user interactions with search engines. However, addressing the
identified challenges is crucial for improving the robustness and applicability of findings. Future
studies should focus on refining methodologies and exploring innovative approaches to overcome
existing limitations in EEG research related to web searches.
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1. Introduction

In today’s fast-paced world of information
technology, the blending of neuroscience with
web search is proving to be an exciting area that
could greatly improve how users interact with
search engines. One fascinating tool in this field is
electroencephalography (EEG), which allows us
to non-invasively record the electrical activity of
the brain. This technique is becoming increasingly

popular in cognitive science and human-computer

interaction (HCI) (Zhu & Lv, 2023). EEG provides
direct, real-time measurements of neural activity
related to attention, workload, and emotional
states during search tasks. This offers insights that
go beyond traditional behavioural or physiological
indicators. By capturing brain activity with high
temporal resolution, EEG enables researchers
to track moment-to-moment changes in user
engagement and relevance assessments. These

insights can be used to inform the design of
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adaptive search interfaces and more intuitive
algorithms. This systematic review explores the
application of EEG in web search research. It
highlights the integration of neuroscience with
information retrieval and addresses the critical
gap between existing feedback channels (such as
clicks, dwell time) and eye tracking, which often
fail to capture the underlying cognitive processes
that influence search decisions. EEG data can
uncover implicit feedback signals, such as
neural indicators of “aha” moments or cognitive
overload, which traditional logging methods do
not reveal. Understanding these hidden cognitive
processes is essential for developing next-
generation search systems that can effectively
respond to user needs.

The story of EEG began in the early 1900s
and has grown significantly, especially recently,
thanks to technological advances. Initially, EEG
was all about basic recordings, but today we
have impressive systems that can give us real-
time insights into how our minds work. Modern
EEG devices are designed for greater comfort
and portability, which opens up possibilities
for conducting studies in more naturalistic
environments, although many current experiments
still take place under lab specifications (Niso
et al., 2023). This development is especially
important when we think about how we use the
internet. As web search has evolved from simple
keyword searches to more complex systems that
understand context and natural language, there is a
growing need to truly understand how users think
and behave when they search online. EEG offers a
valuable method for exploring the cognitive aspect
of web search behaviour, which could completely

change the way we design and improve search

experiences. These insights could inform future
interface designs and adaptive search systems
aimed at making web searches more intuitive and
effective, though such applications remain an area
for extended research.

The application of EEG in web search research
holds significant promise for several reasons.
First and foremost, EEG can greatly enhance our
understanding of user behaviour. By providing
insights into the cognitive processes that underlie
user interactions with search engines, researchers
can develop more intuitive and efficient search
interfaces. This deeper understanding paves the
way for designing systems that align more closely
with the way users think and search (Kaushik &
Jones, 2021).

Another key benefit of EEG is its ability
to conduct real-time cognitive state analysis.
Since EEG captures brain activity as it happens,
researchers can analyse users’ cognitive states
during different stages of the search process.
The real-time data can potentially inform the
development of adaptive search algorithms,
enabling search engines to adjust based on users’
immediate cognitive responses, thereby enhancing
the search experience (Aviles et al., 2024).

Additionally, EEG technology can be
instrumental in emotion recognition during
web searches. By adapting EEG-based emotion
recognition systems, researchers can assess users’
emotional responses throughout their search
experiences. This capability is crucial for enhancing
user experience as it allows for the tailoring of
search results to better meet users’ emotional needs
and preferences (Erat et al., 2024).

The integration of EEG with other
technologies, such as eye-tracking and virtual
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reality, also opens up exciting new possibilities for
comprehensive user experience research in web
search contexts. Combining these technologies can
provide a multi-faceted view of user interactions
and preferences, leading to more effective
research outcomes and improved technology
implementations (Zhu & Lv, 2023).

Finally, insights gained from EEG studies
could significantly advance search engine
optimisation (SEO) strategies. By understanding
how users think and feel while interacting with
search engines, SEO professionals can develop
more effective methods for improving website
visibility and relevance. This synergy between
cognitive research and SEO can lead to enhanced
online experiences for users, making their searches
more fruitful and satisfying (Mladenovi¢ et al., 2022).

In recent years, we’ve witnessed remarkable
progress in the field of EEG technology and its
various applications in cognitive science and
HCI. One of the most exciting developments
has been the advent of wireless EEG devices.
These innovations have opened up new avenues
for research, enabling studies to become more
natural and relevant, particularly in the context
of web search (Niso et al., 2023). Moreover,
the merging of artificial intelligence with
EEG-based brain-computer interface (BCI) is
paving the way for a deeper understanding of
EEG signals. This synergy has the potential to
create more sophisticated and reactive search
systems, ultimately benefiting users (Cao,
2020). In the realm of web search, there are
some emerging interesting trends, including the
use of conversational agents that interact with
users in natural language, such as chatbots and

voice assistants, and the adoption of semantic

search which aims to understand the intent and
contextual meaning behind users’ queries instead
of simple keyword matching. These advancements
strive to enhance user experience and align with
the capabilities of EEG technology seamlessly,
helping us gain insights into user interactions with
search engines and optimising them accordingly
(Kaushik & Jones, 2021).

A significant challenge in web search lies in
accurately understanding user intention (what they
seek) and satisfaction (whether they achieve their
goal). Traditional internet search engines primarily
rely on implicit feedback (such as clicks and dwell
time), which can often be noisy and uninformative
in practice. To develop more adaptive, user-aware
systems, it is essential to identify additional real-
time cognitive and affective signals that reflect
users’ mental states during their search processes.
Although various data points (e.g., eye gaze,
heart rate, skin conductance) have been explored
in the past, their effectiveness in understanding
feedback related to search intent and satisfaction
is limited compared to real-time neural data. EEG
represents a relatively underexplored potential
solution, as it offers insights into cognitive and
emotional responses tied to attention, workload,
and relevance processing—the very foundations
of search intention and satisfaction.

This research aims to delve into EEG studies
within the context of web searching, particularly
examining the challenges that researchers
encounter when selecting appropriate sample
sizes. Recruiting a large group of participants for
EEG studies can present significant financial and
logistical hurdles, making it essential to identify
the most frequently utilised sample sizes in this

domain. The review will explore key gaps in the
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existing literature, including limited sample sizes,
inconsistent methodologies, lack of ecological
validity, and underexplored cognitive phases in
web search processes. It will also summarise the
methodologies employed in EEG studies related
to web search. By analysing findings from a range
of studies, this research aspires to shed light on
the current state of the field and pinpoint critical
areas for future exploration. Additionally, the
review will highlight notable researchers in this
field, helping to underscore their contributions
and influence on the subject. Ultimately, this
work seeks to enhance our understanding of the
methodologies and challenges that accompany
EEG-based research in web searching, providing
valuable guidance for future studies that aim to

tackle these issues.

2. Methodology

2.1 Overview

This research follows the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) framework (Moher et al., 2009) to
provide a well-organised and clear method for
systematically reviewing the use of EEG in web
search studies. The approach involves defining
the research questions, creating a search strategy,
conducting literature screening, and gathering and
analysing pertinent data.

This review employs a qualitative synthesis
rather than a meta-analysis approach, due to the
heterogeneity and variability of study types, EEG
paradigms, and outcome measures across studies.
While a meta-analysis quantitatively synthesises data
from studies that have measured the same outcomes

in similar ways, qualitative synthesis summarises

findings and interprets results across differing

methods to identify patterns, gaps, and themes.

2.2 Research questions

To align with the goals of this study mentioned
in the introduction section, this research will pose
the following research questions:

1. What research questions have been addressed in
past EEG-based web search studies, and how do
they shape the thematic direction of the field?

2. Who are the key researchers and teams in EEG-
based web search studies, and what specific
research questions have they addressed?

3. What methodologies have been employed to
address the research questions in EEG-based
web search studies?

4. What limitations and challenges, including
sample size constraints, do researchers face in
EEG-based web search studies?

5. What are the findings of research using EEG in
web searches?

6. What are the future directions for EEG-based
web search research emerging from current
results regarding ecological validity in real-

world settings?

2.3 Search strategy

A thorough search approach was carried
out utilising the following academic databases:
PubMed, IEEE Xplore, Scopus, Web of
Science, Google Scholar, ACM Digital Library,
SpringerLink, and ScienceDirect. These sources
were chosen to ensure comprehensive coverage
of literature in neuroscience, computer science,
and information science. Boolean operators
(AND, OR) and phrase search techniques (using
quotation marks for exact match) were used to
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construct search queries. For example, queries such
as “electroencephalography” AND “web search”
AND ““user behaviour” were applied to retrieve studies
containing these exact phrases (Table 1). It is necessary
to mention that all the articles were in English.

To improve the accuracy of the literature
search, quotation marks were used around key
phrases, allowing for the finding of exact phrases,
which reduced the inclusion of unrelated studies.
As a result, the need for manual screening was
minimised, creating a focused set of resources that
were directly relevant to the research questions.
While skipping quotation marks could have
broadened the search results, it would have also
resulted in a lot of irrelevant information being
included. To ensure that no important studies were
missed, phrase-based searches without quotation
marks were complemented with targeted keyword
searches in the reference lists of selected articles
and through the use of citation-tracking tools.
This two-step strategy facilitated the achievement
of both accuracy and thoroughness, enabling the
construction of a high-quality dataset while also

reducing the risk of overlooking key literature.

2.4 Inclusion and exclusion criteria

Research was considered for inclusion if it met
the following criteria:
1. It dealt with EEG applications in the context of

web searching or information retrieval.

2.1t presented original experimental data
supported by a well-defined methodology.

3.1t provided details on sample size and the
design of the experiment.

Also, studies were excluded if they:

1. Did not include EEG data as a primary method
(e.g., relied solely on eye-tracking, surveys,
or interviews).

2. Focused on general cognitive or neuroscience
tasks without a web search or information
retrieval component.

3.Used inappropriate study designs (e.g.,
theoretical papers, editorials, or conceptual
models without empirical data).

4. Review articles without original experimental results.

5. Were not peer-reviewed or were not published
in English.

Figure 1 illustrates the number of research
studies relative to EEG in the web search
sphere each year. Although the total number
of studies is small, the consistent emergence
of research since 2009 in the field of
neuroscience, HCI, and information retrieval
demonstrates a burgeoning and interdisciplinary
scholarly interest in this specialised area. The
multidimensionality of studies and applications,
reviewed in detail in this research, also indicates
that it is time to synthesise and combine the

literature in this area.

Table 1. Query Formulation Strategy for Finding the Articles Related
to the Application of EEG in Web Search Research

“EEG”

“Web search”

“User behaviour”

OR AND

OR

AND OR

“Electroencephalography”

“Information retrieval”

“Relevance feedback”
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Figure 1. Number of Studies in the Field of Application of EEG in Web Search Research
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In the past 5 years, there have only been 8
studies that specifically explored the intersection
of EEG and web search. While this limited
number may seem discouraging, it actually
underscores the necessity for a systematic
review. The lack of extensive research in this
emerging field emphasises the importance of
synthesising the available evidence to pave the
way for future investigations. By reviewing and
critically analysing these valuable studies, several
noteworthy trends have been identified, such as
the increasing use of portable EEG devices and
the rise of hybrid methodologies that combine
EEG with other technologies.

2.5 EEG devices used across studies

The current review identified significant
variability among the EEG devices utilised in the
studies, particularly in terms of the number of
electrodes, complexity, and intended applications.
The initial studies examined (e.g., Xu et al.,
2009) employed clinical-grade, multi-channel
EEG systems, such as the Neuroscan NuAmps
amplifier, which were suitable for laboratory
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environments. In contrast, later studies (e.g., Yehia
et al., 2017) adopted portable or consumer-grade
devices, such as the Emotiv EPOC, which are
designed to be more user-friendly and applicable
in real-time scenarios.
The devices examined can be categorised into
3 types:
1.High-density research systems (e.g., 32-64
channel BioSemi, Neuroscan, g.tec systems)
2.Mid-range EEG systems (e.g., 14-channel
Emotiv EPOC, OpenBCI, MindWave)
3. Single-channel or wearable EEG headsets used
in exploratory or hybrid BCI tasks
This diversity in EEG devices influences
factors such as signal quality, setup time,
portability, and the ecological validity of previous
studies. High-density systems typically provide
superior resolution in EEG signals, whereas
portable devices offer greater ecological validity

for real-world research.

2.6 Data extraction
Important details, including sample size,

EEG methods, context of use, and key results,
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were gathered. Information on frequently utilised
sample sizes, encountered challenges, and gaps

identified in the field was also noted.

2.7 PRISMA flow diagram

A PRISMA flow diagram was utilised to
illustrate the study selection process, keeping track
of how many records were identified, screened,

included, and excluded throughout the review

(Moher et al., 2009). This approach provided
transparency in recording the decisions made at

various stages (Figure 2).

2.8 The research included in the systematic review

Appendix A presents the research included in
this systematic review, detailing aspects such as
sample size, methodology, findings, and overall
insights into the application of EEG in the research.

Figure 2. PRISMA Flow Diagram for the Literature Review about the Application of
EEG in Web Search Research
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3. Results and Discussion

RQ1: What research questions have been
addressed in past EEG-based web search studies,
and how do they shape the thematic direction of
the field?

EEG-based web search research has addressed
several fundamental questions about utilising brain
signals as direct input modalities. For example,
Xu et al. (2009) used steady-state visual evoked
potentials (SSVEPs) to facilitate cursor control
as well as character input to Google searches,
replacing standard means of input. Following that,
Yehia et al. (2017) created an SSVEPs-driven
interface with command detection accuracies over
86% and with well-defined navigation features
during real-time browsing tasks. Simultaneously,
an additional line of research using P300
paradigms, such as Martinez-Cagigal et al. (2017),
demonstrated that people with multiple sclerosis
could operate a web browser on their own using
the oddball row-col paradigm, solidifying the
potential of EEG as a hands-free input channel.

A second direction in this theme has focused
on measuring cognitive load and engagement
in the course of search tasks. Antonenko et al.
(2010) utilised real-time EEG measures that can
document small fluctuations in users’ mental
workload when operating hyperlinks as a dynamic
measure of interface evaluation. Gwizdka and
Cole (2011) also integrated EEG (alpha and theta
power) with eye-tracking methods to identify
high or low cognitive workload, claiming that
adaptive systems could respond to user overload.
Scharinger et al. (2016) demonstrated that lower
power in the alpha-band corresponds with the

recognition of search results that were relevant to

an information need, suggesting neural correlates
of what neural scientists often label the “aha”
moment. Finally, Al-Samarraie et al. (2019)
utilised EEG to directly assess layout designs for
a search task, finding that single columns incurred
less cognitive load than multi-column layouts.

Implicit relevance feedback has become
a focus of research, in which EEG is used to
measure any content users find relevant to what
they are looking for, but they did not explicitly
click on anything. Moshfeghi and Jose (2013)
took EEG-derived affective signals and combined
them with eye-tracking and behavioural data to
increase relevance-feedback specificity, showing
the multimodal benefits of EEG in contrast to
univariate signals. Eugster et al. (2014) used
multi-view EEG feature representations to classify
term relevance, resulting in a 17% accuracy
improvement over the benchmarking methods.
Lastly, Golenia et al. (2018) demonstrated the
decoding of ambiguous image search intents in
86% of trials using a combination of EEG and
gaze, highlighting the unique capability of EEG to
disambiguate user goals.

As mentioned, numerous studies have
indicated that similar EEG signals, including
heightened P300 amplitude and some suppression
in the alpha band, correlate with users’ relevance
judgments while evaluating search results. These
neural signals emerge during or before the process
of making explicit judgments, suggesting that
EEG could serve as a potential real-time marker
for relevance processing. However, it does not
straightforwardly demonstrate a strong capacity to
predict relevance or relevance decisions.

Acknowledging the aforementioned

limitations of utilising the EEG system as a stand-
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alone methodology, researchers have sought to
implement homogeneous multimodal systems.
For instance, Jimenez-Molina et al. (2018)
combined EEG inputs with photoplethysmogram
(PPG) and electrodermal activity (EDA) inputs,
and demonstrated successful classification of 4
levels of mental workload with an improvement
in classification accuracy through the combined
use of multimodal inputs. He et al. (2017)
focused on the combination of EEG modality
and electrooculography (EOG) signals by
studying imagined hand movements and eye
blinks to assist mouse movement at specific
locations within a web browser, which was
advantageous for readers as it was a precise and
quick way to integrate data while performing
textual comprehension tasks on the web. Finally,
Gwizdka (2018) showed that algorithms using
both a single-channel EEG attention metric and
pupil dilation measurements were effective in
distinguishing relevant from irrelevant pages,
suggesting more promising forms of sensor fusion
that can offer an even richer combination of inputs
and establish deeper relevance with respect to an
observer’s attention.

More contemporary research has examined
cognitive and affective states that may influence
information search processes more subtly. For
example, Sarraf (2019) derived EEG signatures to
map participants’ experience across the stages of
the Information Seeking Process (ISP) - namely
formulation, exploration, and collection - and
identified unique neural and emotional patterns
at each stage. This has led to the exploration
of an adaptive, stage-aware search system.
Similarly, Michalkova et al. (2022) linked early

event-related potentials (ERPs) to a Feeling-of-
Knowing (FOK) experience, marking indicators
of preconscious awareness with respect to
reformulating queries. Pinkosova et al. (2023b)
reported a previously unrecognised P100
ERP component during relevance assessment
and suggested an association with attention
and working memory. They highlighted the
possibility of new neurophysiological indicators
to personalise information search in real time. In
another research, Torabi et al. (in press) reveal
significant variations in selective attention during
different stages of web searching. They found
that the judgment phase is marked by the highest
alpha wave activity, indicating increased cognitive
processing, while the question formulation and
result evaluation stages exhibit lower alpha wave
activity, suggesting a reduced cognitive load.
This indicates that users’ experience changes in
both internal and external selective attention.
Specifically, during the judgment phase, users
tend to focus less on external stimuli and more on
internal cognitive processes when assessing the
relevance of web pages.

Collectively, these research studies —
covering modalities of input, cognitive load,
implicit feedback, multimodal fusion, and deep
cognitive-affective modelling—have begun to
mark a thematic progress in the use of EEG
for web search. The field has advanced from
proving that EEG can work to developing a
responsive, adaptive, user-centric experience
that uses subtle neural and physiological
responses, toward a truly intelligent brain-based
search experience. Table 2 shows the thematic

classification of these studies.
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Table 2. Themes in EEG-based Web Search Research

Theme Core question addressed

Studies

1.BCI Input Modalities & Can EEG signals (e.g., SSVEP,
Interaction P300, motor imagery) serve as
direct control channels for web
search interfaces?

He et al. (2017, 2020); Lin et al.
(2019); Martinez-Cagigal et al.
(2017); Xu et al. (2009); Yehia et
al. (2017)

How can EEG reveal real-time
cognitive workload, attention,
or engagement during search
tasks?

2.Cognitive Load
& Engagement
Measurement

Al-Samarraie et al. (2019); Antonenko
et al. (2010); Gwizdka & Cole
(2011); Jimenez-Molina et
al. (2018); Nel et al. (2019);
Scharinger et al. (2016)

3.Implicit Relevance
Detection & Feedback

Can we infer which terms, words,
or images users find relevant
purely from EEG signals?

Eugster et al. (2014, 2016); Golenia
et al. (2015, 2018); Jacucci et al.
(2019); Mohedano et al. (2015);
Moshfeghi & Jose (2013);
Pinkosova et al. (2020, 2023a,
2023b); Porta Caubet (2015); Ye
et al. (2023)

4.Multimodal Fusion &
Hybrid Systems

Does combining EEG with
eyetracking, EOG, PPG, or
EDA improve control accuracy
or feedback precision?

Frey et al. (2013); Gwizdka (2018);
Gwizdka & Cole (2011); He et
al. (2017); Jimenez-Molina et
al. (2018); Slanzi et al. (2015);
Wenzel et al. (2017)

5.Information-
Seeking Process &
Metacognition

What neural signatures mark
different search stages (e.g.,
formulation, exploration,
collection) or metacognitive
experiences (e.g., FOK)?

Chen et al. (2022); Michalkova et al.
(2022, 2024); Pinkosova et al.
(2023a, 2023b); Sarraf (2019)

6. Accessibility & Special How can EEG-driven search
Populations interfaces support users with
disabilities, and how do device
form factors affect search
performance?

Debue et al. (2018); Martinez-Cagigal
et al. (2017)

7.Feasibility, Prototyping What frameworks and system
& Integration architectures enable real-time
EEG integration into web
applications for adaptive search
experiences?

Antonenko et al. (2010); Bansal et
al. (2015); Chen et al. (2022);
Golenia et al. (2015)

10
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RQ2: Who are the key researchers and teams in
EEG-based web search studies, and what specific
research questions have they addressed?

Yashar Moshfeghi is the most active author
with 8 publications using EEG, typically in
conjunction with other modalities, as implicit
feedback for relevance in information retrieval.
In his first article with Jose, he established that
affective and physiological signals, including
EEG, provide information about implicit relevance
that improves the accuracy of implicit relevance
feedback beyond behavioural features (Moshfeghi
& Jose, 2013). Most recently, he collaborated
with Pinkosova to explore the neural signature of
Saracevic’s relevance model with EEG and fMRI,
and aimed to better understand the cognitive
processes in search relevance assessment by
examining distinct time intervals of implicit
judgements (Pinkosova & Moshfeghi, 2019).

Giulio Jacucci has produced 4 studies
exploring relevance prediction in online and
user-specific contexts. In Jacucci et al. (2019),
the authors developed classifiers to predict the
relevance of keywords in real-time from EEG
and eye movement data, and achieve Area Under
the Receiver Operating Characteristic Curve
(AUROC) values that are significantly above
chance for the majority of participants. This work
directly tackles the scientific question of utilising
implicit neural and ocular signals to model users’
search intent without any kind of explicit feedback.

Zuzana Pinkosova’s series of 4 publications
provides a detailed study of relevance judgments
and metacognitive effects. For example, Pinkosova
et al. (2020) found that ERPs differentiated
consistently and systematically between the

graded levels of relevance in a question-answering

11

study, appearing to link attentional allocation and
semantic mismatch to specific ERP components.
In subsequent research, Pinkosova identified the
first described P100 component associated with
attention and working memory while engaging in
binary relevance judgments, as well as how self-
perceived knowledge (SPK) modulates neural
processing associated with the evaluation of
relevance (Pinkosova et al., 2023a, 2023b).

Jacek Gwizdka published 3 important articles
examining cognitive load and attention in web
search. Gwizdka & Cole (2011) used EEG (alpha
and theta power) and eye-tracking to distinguish
between high and low cognitive load states while
retrieving information. In Gwizdka (2018), he then
showed that single-channel EEG attention indices,
along with pupil dilation, differentiate relevant
from irrelevant web pages. His work examines the
question of how real-time physiological signals
can be used to inform adaptive interfaces that

respond to users’ cognitive states (see Figure 3).

RQ3: What methodologies have been employed
to address the research questions in EEG-based
web search studies?

For the RQ3 study, the methodological
approaches are specified by the 7 thematic areas
coded into RQ1.

1. BCI Input Modalities & Interaction

In this thematic area, most prior studies
adopted the classical paradigm in EEG so that
individuals could indeed control an application
without the use of their hands. Xu et al. (2009)
created their command selection codes while
using SSVEP stimuli, and harnessed a power
spectral density (PSD) threshold algorithm to
detect users’ focus on a stimulus with flickering

targets to indicate movement of a cursor and input
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Figure 3. Researchers with the Most Number of Works in the Field of
Application of EEG in Web Search Research
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of characters on a computer screen. Yehia et al.
(2017) similarly reproduced command selection
studies without generating builds, but using an
EEG device (Emotiv EPOC headset) and piloting
SSVEP commands while reaching an over 86%
detection rate. Moreover, the P300 “oddball”
paradigm has been studied in this identified area.
Martinez-Cagigal et al. (2017) used a row-column
P300 speller to elicit P300 potentials, allowing
individuals with multiple sclerosis to complete
browsing tasks independently. In a recent study,
Lin et al. (2019) merged SSVEP and eye-tracking
while using Web Socket APIs, enabling another
demonstration of hybrid speller and navigation BClIs.
2. Cognitive Load and Engagement Measurement

In this section, cognitive load is measured in
the form of frequency-band power or ERPs, which
are psychophysiological indications of mental
workload. Antonenko et al. (2010) designed a
custom Java-based framework for recording EEG
in real-time for calculating cognitive load as users
clicked hyperlinks. Gwizdka & Cole (2011) used
an EEG method to extract alpha and theta band

1

W Jacucci, Giulio

W Gwizdka, Jacek
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power to show significant correlations with eye-
tracking measures, identifying high versus low
workload states during search tasks. Scharinger
et al. (2016) engaged in fixation-related EEG
frequency analysis to show decreased parietal
alpha power when participants recognised
information relevant to the task. Finally, a
multisensory approach (e.g., Jimenez-Molina et
al., 2018) combining EEG with PPG and EDA
signals provides a means to classify 4 discrete
levels of cognitive workload for tasks using
machine-learning models.
3. Implicit Relevance Detection and Feedback
Research methodologies in this section
highlight techniques in the areas of feature
extraction and classification. Moshfeghi & Jose
(2013) developed affective (EEG) features as well
as behavioural features, employing supervised
classifiers as a means of yielding better implicit
relevance feedback. Eugster et al. (2014, 2016)
represented the EEG signals in multi-view feature
spaces and trained high-precision classifiers,

yielding up to 17% accuracy when predicting
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term-relevance. Rapid serial visual presentation
(RSVP) paradigm (Mohedano et al., 2015),
in which visual images are shown in rapid
succession while ERPs are recorded, allows for
detecting relevant items without explicit clicks
(i.e., relevance ratings, using explicit relevance
feedback). More recent research by Pinkosova
et al. (2020, 2023b) examined graded ERPs and
P100 components as a means of mapping neural
responses at fine levels of relevance.
4. Multimodal Fusion & Hybrid Systems

These studies focus on the multimodal fusion
of EEG with other data collection sensors. Frey
et al. (2013) integrated eye-tracking and eye
fixation-related potentials (EFRPs) in order to
assess goal-relevant text. Slanzi et al. (2015)
combined gaze data with gamma-band root mean
square (RMS) and EEG variance data to find
salient and relevant objects on a page. Wenzel et
al. (2017) employed a system to classify (in real-
time) task-relevant words by fusing both the EEG
streams and eye-tracking streams. He et al. (2017,
2020) integrated EEG and EOG. Another study by
Jimenez-Molina et al. (2018) included EEG fusion
with 2 additional biophysiological measures: PPG
and EDA, for a thorough workload assessment.
5. The Information-Seeking Process & Metacognition

Researchers have utilised ERP analyses and
mixed methods to elucidate cognitive phases.
For example, Sarraf (2019) recorded EEG data
with psychophysiological data across stages of
the ISP, namely query formulation, exploration
and collection, and found neural and emotional
signatures in the data across each of the phases.
Michalkova et al. (2022) were able to identify
early awareness prior to being consciously aware

of a deficit of knowledge using ERP components.
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Similarly, Chen et al. (2022) decoded electrical
signals in the brain to infer the level of satisfaction
experienced by the user about the information
provided and outside of the study systems or the
platform, and reranked search queries by using APIs
along with the metacognitive feedback process.
6. Accessibility and Special Populations

The methodological focus here is on clinical
and comparative research studies. Martinez-
Cagigal et al. (2017) adapted the P300 BCI
paradigm for people with multiple sclerosis to
assess improvements in levels of independence.
Debue et al. (2018) conducted a within-subject
comparison study between a laptop and touch-
screen PCs, assessing task-level times, accuracy,
and subjective satisfaction to inform an accessible
interface experience.
7. Feasibility, Prototyping & Integration

This research is situated within the problem
of system architecture and field deployments.
Bansal et al. (2015) used EEG sensors that were
embedded into a web browser code to track
varying levels of attention and correlate with
subjects’ page scrolling. Antonenko et al. (2010)
developed a semantic Java framework for real-
time EEG capture in a web-based context. Golenia
et al. (2015) demonstrated a live demo leveraging
EEG and eye-tracking to differentiate between a
series of image searches in a web app. Chen et al.
(2022) combined an EEG decoding system with
Sogou’s query suggestion API to rerank search
results based on implicit user satisfaction.

Spanning these themes, there is a
methodological breadth extending from classic
EEG paradigms to frequency and ERP-based
analyses, machine learning classifiers, and now

increasingly advanced multimodal fusions,
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establishing a strong technical pathway to the

development of EEG-based web search engines.

RQ4: What limitations and challenges, including
sample size constraints, do researchers face in
EEG-based web search studies?

Regarding EEG-based web search studies,
small sample sizes are common due to the costs
and logistical challenges associated with EEG
technology. A review of 43 studies reveals that
many of them (49%) had 10 and 24 participants,
including studies with 20 participants (Allegretti
et al., 2015), 24 participants (Michalkova et
al., 2024; Pinkosova et al., 2023a), and just 10
participants (Xu et al., 2009). While the size of
the sample supports a simpler data collection and
a richer within-subject examination, it necessarily
decreases statistical power and generalizability
because the small sample may not represent the
variability found in the larger user population
(see Figure 4). The majority of the participants
were university students or graduate research

participants. A small number of studies included

more distinct user groups, such as general internet
users or subsets per profession (e.g., librarians,
computer science practitioners). Yet overall,
recruiting student groups was commonplace.

Apart from sample size, a well-known
limitation to EEG data is that they are vulnerable
to biological and environmental noise, including
eye blinks, muscle actions, and electrical noise
from sufficiently close electronics, that might
mask the neural signals. Researchers addressed
these limitations by utilising more advanced
preprocessing and feature-extraction pipelines. For
example, Eugster et al. (2014, 2016) developed
multi-view EEG representations with high-
accuracy classifiers to cleanly extract brain activity
associated with relevance, while Pinkosova et al.
(2020) used ERP analysis to examine graded levels
of relevance, which was yet another example of
advanced signal-processing methods.

The varying and dynamic nature of
cognitive and affective states during web

search makes things even more complicated.

Figure 4. Number of Samples in the Field of Application of EEG in Web Search
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Moshfeghi & Jose (2013) showed that affective
(EEG) and behavioural features can improve
implicit relevance feedback when they occur
simultaneously. However, studying the quick
shifts in user intent during web searches is best
accomplished through meticulous experiment
planning and real-time analysis techniques. In
addition, Golenia et al. (2015) used EEG and eye-
tracking technology to disambiguate image search
results, while recognising and sharing individual
differences in neural response that provide
challenges to a one-size-fits-all model.

Variable inter- and intra-subject characteristics
must be considered when developing models
utilising feature extraction and machine-learning
algorithms. For example, Eugster et al. (2016)
were able to predict relevance better by training
a classifier using structured EEG features. Owing
to individual differences, training generalizability
appears to be limited without calibration involving
several hours of subject-specific input data. This
suggests that either a larger and more diverse
dataset of participant data must be obtained, or
an adaptive algorithm must be explored which is
specifically capable of allowing learning on the
limited data from the subject directly.

Limitations in equipment have also been major
challenges. Research-grade EEG systems that
offer high-density data are expensive, unwieldy,
and deploying EEG systems is challenging
outside of a laboratory setting. Some affordable
or wireless headsets, such as the Emotiv EPOC
used by Yehia et al. (2017), are beneficial
because they are portable, but they compromise
the signal quality of the data. There is a
challenge to provide good data quality, easy
usability, and affordability.
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Inconsistency in methodology across studies,
such as paradigms (e.g., SSVEP, P300, motor
imagery), preprocessing steps, and the types of
machine learning classifiers, makes it difficult to
compare studies and/or conduct meta-analysis.
For example, Xu et al. (2009) used a SSVEP-
based PSD threshold approach, and Martinez-
Cagigal et al. (2017) used a P300 oddball
paradigm to study patients. The development
of standardised protocols would improve
reproducibility and promote the development of
cumulative knowledge.

Lastly, logistical constraints —set up and
calibration time, participant fatigue, and comfort
level —may compromise the quality of the data
collected. Debue et al. (2018) have documented
that the ergonomics of the device and the length
of the session impacted user experience and
performance, and thus indicated that thoughtful
session design and user comfort metrics are
fundamentally important in order to collect
reliable EEG data. Therefore, before significant
advancement of EEG-based web search research
can be realised, it is important to address the
aforementioned shortcomings that have emerged
in totality through more extensive, standardised

and multimodal studies.

RQ5: What are the findings of research using
EEG in web searches?

Research on values of EEG-based web search
indicates robust evidence across the 7 thematic
areas identified in RQI, showing EEG has
the potential for revealing user behaviour and
improving search systems.

1. BCI Input Modalities & Interaction

The SSVEP paradigm is an extremely effective

input modality. Xu et al. (2009) demonstrated



Journal of Library and Information Studies 23:2 (December 2025)

character input and cursor control as an input
for their Google search application, showing
the promise of a brain-actuated web interaction
by assessing only SSVEP. Yehia et al. (2017)
achieved an average command detection accuracy
of 86% based on command detection using an
Emotiv EPOC headset with SSVEP stimuli.
P300 oddball paradigm extends accessibility,
as Martinez-Cagigal et al. (2017) showed a
patient with a diagnosis of multiple sclerosis
could autonomously navigate a web browser by
using user navigation following P300-evoked
potentials to sequence browsing behaviour. More
recently, hybrid systems based on combining
multiple modalities, such as the study of Lin
et al. (2019), validated that 88.5% of spelling
based on command detection could be achieved
using a multimodal BCI interface that included
SSVEP detection, fixation tracking and head
pose all while using WebSocket APIs for a web
interaction task.
2. Measurement of Cognitive Load and Engagement
The frequencies in EEG bands and ERPs are
reliable indicators of workload. Antonenko et al.
(2010) monitored the real-time cognitive load for
users as they selected hyperlinks, and Gwizdka &
Cole (2011) provided evidence of the alpha and
theta power indexes of workload—high workload
produced higher theta and lower alpha power
during retrieval tasks. Scharinger et al. (2016)
found decreased parietal alpha power associated
with the recognition of relevant search results.
Jimenez-Molina et al. (2018) accurately classified
4 discrete workload levels by using multisensor
fusion of EEG, PPG, and EDA. Frey et al. (2013)
combined EEG readings with eye-tracking
data, showing improved cognitive processing
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during fixations related to goals, which bolstered
findings about attention. Similarly, Moshfeghi &
Jose (2013) illustrated that merging emotional,
physiological, and behavioural signals could
increase the precision of relevance feedback in
search systems.

3. Implicit Relevance Detection and Feedback

Implicit feedback systems have increased
engagement. Eugster et al. (2014) improved term-
relevance prediction accuracy by 17% using
multi-view EEG features and classifiers. Allegretti
et al. (2015) found robust EEG differences
between relevant and irrelevant pictures that
would yield more accurate systems if feedback
could be incorporated. Mohedano et al. (2015)
enhanced EEG-based image relevance detection
using an RSVP-based paradigm that outperformed
mouse-based feedback. Pinkosova et al. (2020,
2023b) mapped graded ERPs, revealing a novel
P100 component related to attention and working
memory while assessing relevance.

Real-time feedback and system adaptation
are further areas where EEG has shown promise.
Wenzel et al. (2017) established that EEG could
decipher the subjective relevance of words in
real-time, allowing search systems to adjust
dynamically to users’ interests. More recently,
Ye et al. (2023) demonstrated that incorporating
brain signals into relevance feedback frameworks
considerably enhances performance, particularly
in challenging search scenarios. Lastly,
the research has delved into emotional and
behavioural metrics. Nel et al. (2019) underscored
the effect that search engines and terms can have
on users’ emotional states, showing that EEG
can measure feelings such as engagement and

frustration during searches.
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4. Combined Modality Fusion & Hybrid Systems
The combination of EEG with other signals
improves performance. For example, Frey et al.
(2013) investigated fixation-related potential in
EEG (frpEEG) in time-synchronisation with eye-
tracking to elicit recordings of goal-relevant text.
Moshfeghi & Jose (2013) combined emotional
EEG features with behavioural data to convey
emotional homogeneity, improving the precision
of relevance feedback. Wenzel et al. (2017)
proposed real-time decoding of subjective word
relevance through EEG and eye-tracking stream
combination. Jimenez-Molina et al. (2018)
attested that PPG and EDA improve EEG mental-
workload classification.
5. Information-Seeking Process and Metacognition

EEG identifies distinct neural markers during
different stages of the search process. Sarraf (2019)
reported that there is greater attentional processing
upon the initial stage of the ISP when the user
formulates their query, and task satisfaction, at the
final stage, during the collection of information,
and specifically mapped cognitive and emotional
processes to each of these ISP stages. Michalkova
et al. (2022) concluded that early topographic ERP
components indicated preconscious awareness of
knowledge gaps, as the stages of the ISP unfolded.
Lastly, Chen et al. (2022) successfully decoded
brain signals to facilitate real-time user satisfaction
feedback during information-seeking, which the
researchers were able to use for dynamic query
reranking through the Sogou API.

Furthermore, insights into browsing behaviour
and preferences have been gleaned from EEG
data. Bansal et al. (2015) linked user attention
levels to specific web page sections, providing

valuable knowledge for web design and ad
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placements. Katona et al. (2017) discovered that
mid-gamma brainwave strength was notably
higher during video browsing as opposed to static
content, indicating differing cognitive demands.
Finally, in terms of accessibility, Lin et al. (2019)
developed a hybrid BCI web browser that utilises
both EEG and eye-tracking data, achieving an
impressive average accuracy of 88.5%. The
innovation enables users with motor impairments
to interact with web interfaces more effectively.
6. Accessibility and Special Populations
BCl-based systems provide assistive devices
for users with limitations. Martinez-Cagigal et al.
(2017) provided evidence that users with multiple
sclerosis were able to perform web-based tasks
using a P300 web browser with significantly
increased autonomy. Debue et al. (2018) compared
laptops with touch-screens and provided evidence
for preferred devices in relation to various search
tasks, while offering insight for the design of
accessible interfaces.
7. Feasibility, Prototyping and Integration
Prototype systems provide evidence of real-
world feasibility. For example, Bansal et al. (2015)
embedded EEG sensors in a web browser to obtain
a distinctive mapping of user attention to webpage
sections, providing a platform for web design or
advertisement practices. Antonenko et al. (2010)
developed a Java framework that provided specific
live analysis of EEG events in a web context.
Golenia et al. (2015) provided a live demonstration
combining both EEG and eye-tracking methods to
provide specificity to disambiguated image search
tasks. These prototypes led to further exploration
of the feasibility of EEG-driven search interfaces
and the adaptability of scaled types of EEG.
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RQ6: What are the future directions for EEG-
based web search research emerging from
current results regarding ecological validity in
real-world settings?

Future directions for EEG-based web search
research increasingly emphasise boosting
ecological validity by going beyond laboratory
settings and filling existing methodological and
practical gaps. EEG has demonstrated its utility
in revealing cognitive states such as attention,
relevance detection, and workload, but the vast
majority of studies to date involve a static, tightly
controlled environment, which may not reflect
the complexities of the web search experience in
daily life. As a consequence, the results may not
generalise well to the real-world context, where
users are consuming information in their online
environment with fluctuating emotional states,
distraction from the environment, and a varying
number of devices.

A key future direction is the development of
mobile EEG technology to facilitate the collection
of research data in more naturalistic contexts (or
an ecologically valid way). Recent research has
begun to utilise portable and wireless systems,
such as those of Yehia et al. (2017) and Katona
et al. (2017) —but the deployment of these
systems remains limited. Devices are the first
steps to embarking on studies performed in the
home browsing context, searching on the move
with a smartphone, or in a multitasking format,
where researchers can initiate surveying without
removing the system, thereby better reflecting
cognitive fluctuations and shifts in attention.
Increasing mobile EEG research will significantly
enhance the ecological validity of garments. Such

improvement will allow us to better account for
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everyday distractions, emotional volatility, and the
varying demands of tasks in real-life situations,
rather than relying on highly controlled desktop
computer studies.

A further avenue of inquiry is the inclusion of
EEG along with rich behavioural data to create
a more comprehensive understanding of web
search behaviour. Many studies have collected
eye tracking and mouse activity along with EEG
signals, although many other studies still do
not combine EEG signals with data collected
simultaneously. Investigation of real-world
behaviour would be enhanced through EEG by
absorbing log data such as clickstreams, scroll
behaviour, keystroke behaviour, and even voice
inputs. This would be an additional form of
multimodal fusion, which would establish strong
cognitive modelling as well as integrate and
improve the design of adaptive search interfaces
responsive to overt and covert user cues.

Dealing with variance due to methodological
inconsistency is also central to improving
the external validity and generalizability of
findings across contexts. The methodological
inconsistencies currently observed in the web
searching literature, ranging from differences in
the number or configurations of electrodes used
to measurement and preprocessing methods,
result in massive challenges for comparing results
or building upon any existing body of work. In
this regard, studies should attempt to establish
a standard methodology for the collection and
analysis of EEG data in web search contexts.
Defining shared baselines on a methodological
level will be critical to moving forward, especially
as studies have turned to obtain real-world studies

with much variance in data methods.
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The exploration of machine learning,
particularly deep learning and transfer learning
approaches, has emerged as an area of increasing
interest in the feature extraction and analysis
domain in order to model complex cognitive
processes in real time. Current research still
largely utilises traditional ERP and frequency-
domain features, although dynamic web search
behaviour creates highly non-linear and context-
sensitive brain responses. If models were
developed in deep learning, trained on mobile
EEG data, and informed by behavioural context,
we could enhance the robustness and applicability
of EEG-based search adaptation systems.

A further gap in research pertains to inclusive
research in specific contexts of users with
cognitive or motor impairments. Very few studies
(e.g., Martinez-Cagigal et al., 2017) have shown
how BCIs can enable user engagement with
disabilities. Far more research is necessary to
understand how neurodivergent users generate
cognitive responses to search tasks and how their
cognitive behaviours could be incorporated into
adaptive interfaces. Researching diverse cognitive
profiles in research settings, and for search tasks
that simulate real-world challenges —multitasking,
emotional distraction, or information overload —
would broaden the applicability of the findings
from EEG-based studies.

Ultimately, ongoing research should explicitly
model the complete search process, which
encompasses the cognitive phenomenon of
seeking, the building of queries, exploration,
assessing relevance, and making decisions under
uncertainty. Although some studies (e.g., Sarraf,
2019) have begun to map EEG responses on these
individual phases of the full cognitive search
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process, it would be beneficial to model search
in a more segmented fashion to provide insights.
This would allow direct measurement of cognitive
effort, feelings and SPK that all may fluctuate over
time. The research will be informative in the design
of interfaces that account for the complexity of not
only user profiles but also user state to create more
robust and usable web searches.

To summarise, if we truly want to expand
ecological validity in future research using
EEG and web search, we must move beyond
static and individualised web-use, then towards
mobile, adaptive, and inclusive research based in
ecologically valid research to capture diversity of
not only users’ behaviours but interactions with

context, spaces and thoughts.

4. Conclusion

This systematic review highlights the emerging
role of EEG as a transformative tool in web search
research. By meticulously examining existing
methodologies, sample sizes, and challenges
within the current literature, the paper emphasises
how EEG can deepen our understanding of
cognitive and emotional processes involved in
web searches.

EEG has proven to be valuable in revealing
the complex connections between cognition and
emotion, allowing researchers to gain insights
into user states like attention levels, cognitive
workload, and emotional engagement as they
navigate online. For instance, various studies
have shown that EEG can effectively predict
users’ relevance judgments and measure their
cognitive load. These insights have the potential to

dynamically enhance search algorithms, leading to
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more personalised and responsive user experiences
(Moshfeghi & Jose, 2013; Nel et al., 2019; Sarraf,
2019).

The review does, however, highlight
persistent challenges associated with EEG
research, including issues related to artefact
management and the limited generalisability of
findings due to small sample size. To overcome
these hurdles, there is a need for methodological
advancements, involving the development of
standardised protocols, sophisticated artefact
removal techniques, and the combination of EEG
with other tools like eye tracking and behavioural
metrics. Such innovations could strengthen the
ecological validity of the findings and make them
more applicable in real-world web search contexts
(Gonzdlez-Ibanez et al., 2016; Rashid et al., 2020;
Zhang et al., 2024).

In EEG-based web search studies, a typical
sample size of 10 to 24 participants is frequently
utilised, as shown by various studies in this
review. This range strikes a balance between
the practical difficulties of conducting EEG
experiments and the necessity for reliable data.
While a smaller sample size is more cost-
effective and easier to manage, it allows for
controlled settings and in-depth analyses of
individual subjects. However, this can restrict the
applicability of the results to larger populations.
Increasing sample size beyond this range requires
considerable funding and careful planning, as EEG
research demands significant resources due to the
expenses associated with equipment, participant
recruitment, and data analysis.

Moreover, the integration of EEG with other
modalities, such as virtual reality and artificial

intelligence, presents a significant opportunity
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for future research. By employing multimodal
approaches, researchers can gather richer datasets
that capture user behaviour more effectively,
thereby enabling the creation of comprehensive
user models and adaptive systems. This is
particularly promising for applications requiring
high accessibility, such as interfaces that serve
individuals with physical or cognitive impairments
(Lai et al., 2019).

The insights derived from EEG studies can
greatly influence SEO and interface design.
By understanding patterns of attention and
engagement, designers and SEO experts can
create more user-centric interfaces that better
align with cognitive capabilities and preferences.
This alignment not only boosts usability but also
enhances the efficiency of information retrieval
(Mladenovic et al., 2022).

The field of EEG in web search has been
significantly advanced by several key researchers.
For instance, Yashar Moshfeghi stands out with
8 publications that offer foundational insights
into the use of EEG for relevance detection and
information retrieval. Other notable contributors
include Giulio Jacucci and Zuzana Pinkosova,
both of whom have published 4 articles each.
Their consistent efforts explore the link between
EEG and user behaviour. Contributions from
these authors create a solid basis for systematic
reviews, leading to a focused and comprehensive
understanding of methodologies and findings in
this specialised area (Gwizdka, 2018; Jacucci et
al., 2019; Moshfeghi & Jose, 2013; Pinkosova et
al., 2023a).

Finally, the review identifies notable gaps in
current research, particularly regarding the limited

examination of diverse user populations and real-
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world scenarios. Future studies should emphasise
inclusivity, as well as exploring the experiences
of users with varying cognitive abilities and
addressing the complexities of dynamic online
environments. Additionally, leveraging advanced
machine learning algorithms for feature extraction
and signal analysis could further enhance the
predictive capabilities of EEG in this field.

One of the limitations of this review is noted
to be the variety of platforms included in the
studies. “Web search” was defined to encompass
all kinds of systems, ranging from Google and
Yahoo to bespoke experimental search engines
and browser-based BCI interfaces. Differences
in default layout, interaction mode, and user
population are introduced by each platform. It is
recognised that variations in platforms can affect
cognitive load, determine relevance, and influence
the interpretation of EEG signals. While trends
in cognitive processes were found across studies,
it should be noted that comparisons between
studies should be moderated by these contextual
variables. It is suggested that future studies
could employ some standardisation, or at least an
explicit platform type category in data analysis.

This review highlighted that, although EEG
studies have made strides in exploring cognitive
load, attention, and relevance during the search
process, and the relationships with neural
correlates of these various components, these
studies indirectly address the more central issue
of how users formulate intentions and ultimately
assess satisfaction. Additionally, the studies shared
commonalities regarding ERP component analysis
related to engagement (P300) and decision-making
(alpha-band suppression). However, it’s important

to note that the EEG-based studies predominantly
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involved small sample sizes, utilised varied EEG
recording devices, and employed simplified search
tasks, which limits their generalisability to real-
world search contexts.
Future research should focus on the following areas:
1. Integrating EEG data with other data types
(e.g., eye tracking and clicks) to develop a
multimodal model of user intention;
2. Creating search tasks that resemble realistic
behaviours more closely;
3. Investigating adaptive systems that can respond
to the user’s mental state in real-time;
4. Expanding the diversity of user populations to

enhance representativeness.
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Appendix B
Abbreviations

AUROC - Area Under the Receiver Operating HCI — Human-computer interface
Characteristic Curve

BCI - Brain-computer interface ISP — Information seeking process

BMSI — Brain-Machine Search Interface LPC - Late Positive Component

CPP - Centro-Parietal Positivity P300 — A specific ERP component

EDA - Electrodermal activity PPG - Photoplethysmogram

EEG - Electroencephalography PSD - Power spectral density

EFRP - Eye fixation-related potential RMS - Root mean square

EOG - Electrooculography RSVP — Rapid serial visual presentation

ERP — Event-Related Potential SPK — Self-perceived knowledge

FOK - Feeling-of-knowing SSVEP — Steady-state visual evoked potential
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