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Abstract
Access to sufficient, high-quality data is essential for effectively training and validating machine 

learning classifiers. This study investigates class mapping as a data fusion strategy to enhance training 
data for research classification. Two versions of the Australian and New Zealand Standard Research 
Classification, ANZSRC 2008 FoR and ANZSRC 2020 FoR, are used to organize 179,431 documents 
from eight institutional repositories into plain and mapped datasets. Each dataset is divided into 
subsets corresponding to the division, group, and field levels of the classification schemes. Results 
show that 49% to 63% of documents are successfully mapped between schemes. Classifiers by 
Support Vector Machines (SVM), SciBERT, ModernBERT-base, and ModernBERT-large are trained 
to assess the effectiveness of this data fusion approach on classification performance. All models show 
improved performance at the three levels. ModernBERT-large achieved the greatest performance 
gains, with the improvements in validation F1 scores of 1.0% and 2.5% at the division level, 4.4% and 
2.2% at the group level, and 9.9% and 11.5% at the field level. An emergent ability was observed, as 
performance in non-augmented classes improved with ModernBERT-large but not with ModernBERT-
base. Overall, this study demonstrates that class mapping effectively enriches training datasets, 
enhances classification performance, and underscores the importance of model size and architecture. 
These findings offer a practical and scalable strategy for improving machine learning performance in 
research classification tasks.
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1.	Introduction
Resea rch c l a s s i f i c a t i on i s s e rved fo r 

bibliographic and administrative purposes 
(Hjørland & Gnoli, 2022) for various or specific 
regions or disciplines. While evaluating or 
comparing the research output collections from 
incompatible schemes, arranging collections into 
a unified classification scheme is an ordinary 
approach. The correspondence table is a common 
method in Library and Information Science (LIS) 
to interoperate two schemes. We will use the 
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correspondence table as a data fusion strategy to 
develop classifiers for two research schemes. The 
Australian and New Zealand Standard Research 
Classification (ANZSRC) is a classification 
system developed to measure and analyze the 
research and experimental development (R&D) 
statistics in Australia and New Zealand (Australian 
Bureau of Statistics, 2020b; Commonwealth of 
Australia and New Zealand, 2020). ANZSRC was 
first released in 2008 and revised in 2020 to keep 
up with the pace of contemporary research. Fields 
of Research (FoR) is one of three classifications 
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in the ANZSRC and the fields are categorized 
according to “common knowledge domains 
and/or methodologies” (Australian Bureau of 
Statistics, 2020b). ANZSRC FoR is not only used 
in Australia and New Zealand but also globally 
employed by Springer Nature SciGraph (Pasin, 
2017) and Dimensions (Digital Science and 
Research Solutions, 2022a, 2022b). Dimensions 
stated that ANZSRC FoR encompasses all 
academic disciplines at a general level, allowing 
for comparisons across various research areas. 
Although ANZSRC FoR is designed to include all 
research areas, the scheme is inevitably outdated 
and is revised to keep the immediacy. However, 
a forthcoming document classified in the revised 
scheme cannot be directly compared with those in 
the original scheme. Only 9% of the documents 
in our dataset are classified in both two revisions. 
Collection evaluation necessitates reclassification 
b e t w e e n A N Z S R C 2008 F o R ( F o R2008) 
and ANZSRC 2020 FoR (FoR2020), where 
reclassification efforts can be optimized through 
systematic class mapping.

This study aims to explore the interaction 
among three in terconnected components : 
bibliographic records, class mapping, and 
classification models. The primary objective is 
to enrich plain datasets through class mapping 
b e t w e e n s c h e m e s . T h e s e c o n d o n e i s t o 
systematically evaluate various machine learning 
algorithms to identify optimal classifiers for both 
plain and mapped datasets. The third one is to 
examine the factors that influence improvements 
in classification performance. The class mapping 
established in the correspondence table delineates 
relationships between classes in one scheme 
and their counterparts in the other scheme, with 

each class potentially corresponding to multiple 
classes across schemes. The FoR2020 scheme is 
so updated that the records of some classes are 
insufficient for training classifiers. This shortage 
is partially mitigated by augmenting records 
from FoR2008. The field of AI has repeatedly 
“reinvented the wheel” to address challenges that 
the LIS field had already developed solutions for 
years earlier (Dahlberg, 1993). Interoperability, a 
concept implemented in LIS well before the advent 
of the internet (Zeng, 2019), is operationalized 
in this study through a correspondence table 
to enrich bibliographic records for developing 
machine learning classifiers.

2.	Related Studies
The first section introduces the research 

classification and the ANZSRC. The second 
section presents the text classification by machine 
learning. The document and class interoperability 
are discussed in the third section.

2.1	Australian and New Zealand Standard 
Research Classification

Research classification systems are purposed 
for reporting research activities (Hjørland & 
Gnoli, 2022) by various organizations or countries. 
Some classification systems (e.g., The Flemish 
Research Discipline Classification, Vlaamse 
Onderzoeksdiscipline Standaard, VODS) may be 
termed “discipline classification” but essentially 
refer to research classification. Disciplines are 
tightly connected to the phenomenon of teaching 
and research, which are two main missions 
of scholars in modern research universities 
(Hammarfelt, 2020). As to the teaching mission, 
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the International Standard Classification of 
Education (ISCED) is one of the universal 
education classification systems organized by 
the education levels and fields (United Nations 
Educational, Scientific and Cultural Organization, 
2015), which differs from the research activities. 
Hider and Coe (2022) mapped university faculty 
structure to the bibliographic, education, and 
research classification systems. 56.7% of the 
university structures are mapped to the Dewey 
Decimal Classification (DDC), 49.8% to the 
Library of Congress Classification (LCC), 61.2% 
to the Australian Standard Classification of 
Education (ASCED), and 54.2% to ANZSRC. The 
varied ratios depict that those classification systems 
are not aligned since the disciplines and fields are 
“sliced and diced” in the universities. Mapping 
collections across institutions, libraries, or disciplines 
requires a unified system. Research classification 
offers a viable solution, as it strikes a balance 
between the specificity of bibliographic classification 
and the broad scope of educational classification.

This study adopts the ANZSRC FoR as 
the targeted research classification system, 
as it aligns with the Frascati Manual of the 
Organisation for Economic Co-operation and 
Development (OECD) (Australian Bureau of 
Statist ics, 2020b; Hjørland & Gnoli , 2022; 
OECD, 2015) and could be crosswalked to other 
classification schemes. The Frascati Manual of 
the OECD defines the most globally recognized 
standards and recommendations to collect and 
report comparable statistics about research 
and experimental development. The ANZSRC 
is internationally applicable and leveraged or 
referred by other schemes such as Canadian 
Research and Development Classification (CRDC) 

in Canada (Legendere, 2019), or the Flemish 
Research Discipline Classification Standard in 
Belgium (Vancauwenbergh & Poelmans, 2019). 
Legendere (2019) asserts that the reference to the 
Frascati Manual and ANZSRC aims to increase 
computability, collaboration, and international 
standards alignment. The correspondence table 
enables ANZSRC to be interoperable with 
classification schemes based on the Frascati 
Manual, providing a foundation for mapping 
to additional schemes. The databases such as 
Springer Nature SciGraph (Pasin, 2017) and 
Dimensions (Digital Science and Research 
Solutions, 2022a, 2022b) employ ANZSRC FoR to 
classify the curated documents. Bornmann (2018) 
manually inspected the classification results of his 
199 articles in Dimensions, and he found that “most 
of the papers seem misclassified.” (p. 639) However, 
automatic classification studies for ANZSRC FoR 
are needed since manual classification for a huge 
number of documents is infeasible. Our study 
increases the number of training documents to 
improve the classification performance.

ANZSRC was established jointly by the 
Australian Bureau of Statistics and Statistics New 
Zealand, and contains three classifications for 
the measurement and analysis of research and 
experimental development in Australia and New 
Zealand. Preceded by the Australian Standard 
Research Classification (ASRC) of 1998, the 
ANZSRC was published in 2008 and revised in 
2020. Three ANZSRC classifications are: (1) 
Type of Activity (TOA), which categorizes the 
types of research effort; (2) Fields of Research 
(FoR), which categorizes the common knowledge 
domains and/or methodologies; (3) Socio-
economic Objective (SEO), which categorized 
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the intended purpose or outcome perceived 
by the authors (Australian Research Council, 
n.d.). ANZSRC FoR has a hierarchical structure 
of three levels, which are named Divisions, 
Groups, and Fields. FoR2020 establishes the 
Indigenous Studies Division, eliminates the 
Technology Division, and tears the Medical and 
Health Science into two more focused Divisions 
(Commonwealth of Australia and New Zealand, 
2020). A division class is represented by a two-
digit number, and a group class is represented 
by a four-digit number, of which the first two 
digits stand for the belonging division class. A 
field class is represented by a six-digit number in 
which the first two digits refer to the belonging 
division class, and the first four digits signify 
the belonging group class. The division classes 
of FoR2008 are numerated from 01 to 22. In 
contrast, the division classes of FoR2020 are 
numerated from 30 to 52. Class number ending 
in 99 denotes a miscellaneous class, which is 
designed to include not-elsewhere-classified 
topics, including cutting-edge discovery. Macauley 
et al. (2011) discovered that disproportionately 
high numbers of theses in some group classes are 
classified into miscellaneous classes, and they 
suggested the classification by authors, as well 
as the update of the legacy scheme. FoR2008 
has 22 divisions, 157 groups, and 1,238 fields. 
FoR2020 has 23 divisions, 213 groups, and 1,967 
fields. The number of groups or fields growing 
over time indicates the later schemes extended 
to include new topics. The Australian Bureau of 
Statistics offers correspondence tables including 
the table between FoR2008 and FoR2020, from 
which the mapping relations between schemes 
are derived. The Research Excellence Branch 

of the Australian Research Council conducted a 
manual classification task (Macauley et al., 2011) 
for classifying 9,051 Ph.D. thesis into FoR2008. 
47.6% of the theses were allocated with 2 labels, 
26.8% had 1 label, and 25.6% had 3 labels. They 
suggested that the codes should be assigned by the 
authors, who are familiar with the text content and 
can allocate accurate labels. Authors, however, 
may not be familiar with the scheme and may 
classify better by suggesting plausible classes.

2.2	Automatic text classification
The advancement in AI technology is capable 

of assisting the classification tasks for knowledge 
organization systems (KOS), and the natural 
language processing (NLP) methods are overtly 
amended as of the 2010s (Collobert et al., 2011). 
The “representation” is one of the changing 
features of modern NLP. Each linguistic entity, 
such as a word (e.g., Mikolov, Chen, et al., 2013), 
a phrase (e.g., Mikolov, Sutskever, et al., 2013), 
as well as a sentence or document (e.g., Le & 
Mikolov, 2014), is represented by a real-valued 
vector of the distributed representation, which 
is contrary to the distributional representation 
such as term frequency or TF-IDF. Word2vec and 
fastText (Bojanowski et al., 2017) are popular 
static embedding models that can deal with 
various semantic tasks, such as text classification, 
but cannot tackle polysemy. By leveraging ELMo 
(Peters et al., 2018) and Transformer (Vaswani et 
al., 2017), BERT (Devlin et al., 2019) generates 
dynamic embedding in which the vectors of 
the entities are subject to the context words. 
A polysemic word is represented by relatively 
dissimilar vectors if the word performs distinctive 
semantics in different contexts. Modern NLP 
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models are capable of distinguishing not only the 
polysemy but also the sequential order of words 
in a sentence that traditional bag-of-words models 
cannot. Garcia-Silva and Gomez-Perez (2021) 
built multi-label FoR2008 classifiers with BERT 
(Devlin et al., 2019), BioBERT (Lee et al., 2020), 
SciBERT (Beltagy et al., 2019), GPT-2 (Radford 
et al., 2019), SVM (Sebastiani, 2002), and fastText 
(Bojanowski et al., 2017) on the SciGraph dataset. 
The SciBERT model achieved the highest F1 score 
at the division level. Among nine selected group-
level classes, the top-performing classifiers varied: 
SciBERT outperformed in five groups (Biological, 
Medical and Health, Chemical, Mathematical, 
and Computer Sciences), native BERT excelled in 
two groups (Language and History), and SVM led 
in two groups (Built Environment and Creative 
Arts). ModernBERT (Warner et al., 2024), a 
BERT variant like SciBERT, features architectural 
enhancements and is pretrained on scientific 
literature and web data, making it well-suited for 
our research classification tasks. ModernBERT 
provides a large model variant, which theoretically 
offers improved performance. This enables a 
clearer assessment of classifier effectiveness 
when trained on both plain and mapped datasets. 
Wu et al. (2021) trained traditional machine 
learning models, including Multinomial Logistic 
Regression (MLR), Multinomial Naive Bayes 
(MNB), K-Nearest Neighbors (KNN), and SVM 
on records from Research Data Australia (RDA) at 
the division level of the FoR2008. They suggested 
that the group or field level classifiers are more 
suitable for practical use. S. Zhang et al. (2023) 
employed ChatGPT on the RDA dataset and 
demonstrated that ChatGPT did not generally 
outperform MLR or KNN models. They prompted 

only the division classes and exemplar articles 
since prompting all field-level class headings 
is too lengthy for ChatGPT 3.5. ChatGPT often 
generated hallucinations that documents are 
classified into non-existent classes in our trial. 
The above automatic text classification studies 
regarding the ANZSRC FoR dealt with division-
level or group-level classification, but no studies 
achieved field-level classification of more 
than 1,000 classes. Our study accomplished 
the classifiers of three levels with the above-
mentioned and additional large language models 
(LLM). Arhiliuc et al. (2025) conducted a multi-
label classification of journal article abstracts from 
the Web of Science into 42 OECD FORD classes 
using BERT, SVM, SPECTER, and GPT-3.5. They 
found that BERT outperformed the other models, 
followed by SVM+TFIDF, SVM+SPECTER, and 
GPT-3.5. They highlighted the “scarcity of labeled 
multidiscipline data”, and address the scarcity by 
aggregating the records from multiple repositories 
and mapping classifications from other schemes.

2.3	Interoperability
A scheme is revised to reflect advancements 

in science, creating the need to reclassify labeled 
articles from the legacy scheme into the new 
one. Porter et al. (2023) combined bibliometric 
c lu s t e r i ng , venue sub j ec t , manua l c l a s s 
assignment, and direct mapping at the field-level 
classes from FoR2008 to FoR2020 in Dimensions, 
which employs SVM to classify at the division 
and group level of the schemes. However, they 
do not list any classification performance metrics. 
L. Zhang et al. (2022) examined the article-level 
classification consistency among three databases: 
(1) Web of Science subject categories (WoS SC); 
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(2) Dimensions FoR classes, which is derived 
from FoR2008; (3) subject classification of 
Springer Nature (SNSC). WoS SC is generated 
from the citation relation. SNSC is labeled by the 
authors. Articles are mapped or classified into 
OECD FOS (Field of Science and Technology) 
2007, which is composed of 6 major categories 
and 43 minor categories. The results showed that 
single-category assignment in WoS SC is generally 
inappropriate, which confirmed the viewpoint 
of Macauley et al. (2011) that multi-classes are 
more appropriate to describe a document. Their 
study demonstrated the re-classification process 
via mapping relation, which defined the relations 
between two documents as identical, partially 
identical, and inconsistent. Our study would 
formalize the relations. The classification in the 
three databases is greatly inconsistent in that only 
27% of papers had identical fields between the 
machine-generated Dimensions FoR code and 
human-judged SNSC. Since the articles authored 
by Bornmann (2018) in Dimensions are mostly 
misclassified, it would be ideal to boost the 
classification performance before the examination 
of the consistency by class mapping. In contrast, 
the classification performance may be improved 
by class mapping as our study would demonstrate.

3.	Class Mapping Relation
Australian Bureau of Statist ics (2020b) 

publishes “ANZSRC 2020 correspondence to 
ANZSRC 2008” (Australian Bureau of Statistics, 
2020a) that enumerates the class mapping between 
ANZSRC 2020 FoR and ANZSRC 2008 FoR. A 
correspondence relation is dyadic, meaning that a 
class in one scheme corresponds to a single class 
in the other scheme. Given the correspondence 

relation is denoted as ↔, the correspondence 
relation is denoted as clsi ↔ clsj, which means 
that class i maps to class j. ↔ is symmetric that 
clsi ↔ clsj is equivlant to clsj ↔ clsi. The class 
set of the ANZSRC 2008 FoR is denoted as  
CSFoR2008 = {clsi|∀clsi ∈ FoR2008}. Similarly, 
CSFoR2020 = {clsj|∀clsj ∈ FoR2020}. The mapping 
matrix MAP ∈ 2

|CSFoR2008|×|CSFoR2020| is defined as:

MAPi,j = 	1 clsi↔clsj is in the correspondnece table
	 0 clsi↔clsj is not in the correspondnece table

The mapping relation between classes of 
two schemes is derived and categorized with the 
mapping matrix. The row sum of the mapping 
matrix MAP with respect to clsi, i.e., rowsum(MAP, 
i) = Σ|CSFoR2020|

k=1  MAPi,k, is the number of FoR2020 
classes to which clsi is mapped. The column sum 
with respect to clsj, i.e., colsum(MAP, j) = Σ|CSFoR2008|

j=1  
MAPk,j, is the number of FoR2008 classes to 
which clsj is mapped. The relation of a class pair 
is identified by three conditioned variables: (1) 
MAPi,j, (2) rowsum(MAP, i), and (3) colsum(MAP, 
j). The previous studies had identified four kinds 
of class relation: (1) equivalence, (2) inclusion, 
(3) is about, and (4) union (Dahlberg, 1998; Meo-
Evoli et al., 1998). We rename “is about” to 
“overlay” for readability. Since the union relation 
can be fully expressed by inclusion relation, union 
relation is omitted in Table 1. In addition, the 
disjoint relation is appended to describe the non-
mapped type.

The above four kinds of relations are further 
simplified into three types of relations by jointly 
considering the mapping direction as shown in 
Table 2. Three types of class relation are (1) non-
mapped, (2) possibly-mapped, and (3) definitely-
mapped. Our study applies the definitely-mapped 
relation to propagating documents’ classification 
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labels from one scheme to the other one. 74% 
(802/1,081) of FoR2008 non-miscellaneous field-
level classes are definitely mapped to FoR2020. 
On the contrary, 85% (1,499/1,754) of FoR2020 
non-miscel laneous f ield- level c lasses are 
definitely mapped to FoR2008. The definitely-
mapped relation is the only type employed 
to augment the datasets. Porter et al. (2023) 
discovered that 80% of FoR2008 codes could 
be mapped directly to codes of FoR2020. Our 
study provides a more accurate ratio with the 
operation of the mapping matrix.

4.	Research Questions
(1) What quantitative increases are observed 

in the number of classes and documents 
when transitioning from plain datasets to 
mapped datasets?

(2) What is the comparative performance of 
t radi t ional machine learning and deep 
learning algorithms across the three levels 
of the ANZSRC Fields of Research (FoR) 
classification scheme?

(3) H o w d o e s c l a s s  m a p p i n g i n f l u e n c e 
classification performance metrics?

Table 1.   Four Kinds of Class Relation

Kind Denotation
Conditioned variables

MAPi,j rowsum(MAP, i) colsum(MAP, j)

Disjoint Clsi ǁ Clsj 0 (ANY) (ANY)

Equivalence Clsi = Clsj 1 1 1

Overlap Clsi ⊗ Clsj 1 >1 >1

Inclusion Clsi ⊂ Clsj 1 1 >1

Inclusion Clsi ⊃ Clsj 1 >1 1
Note. Clsi ∈ CSAFoR2008, Clsj ∈ CSFoR2020

Table 2.   Three Types of Class Relation

Type
Mapping direction

FoR2008 to FoR2020 FoR2020 to FoR2008

non-mapped Clsi ǁ Clsj Clsi ǁ Clsj

possibly-mapped (Clsi ⊗ Clsj) OR (Clsi ⊃ Clsj) (Clsi ⊗ Clsj) OR (Clsi ⊂ Clsj)

definitely-mapped (Clsi = Clsj) OR (Clsi ⊂ Clsj) (Clsi = Clsj) OR (Clsi ⊃ Clsj)
Note. Clsi ∈ CSFoR2008, Clsj ∈ CSFoR2020
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5.	Method
The bibliographic records containing the 

metadata fields of title, abstract, as well as 
ANZSRC 2008 FoR or ANZSRC 2020 FoR, 
are harvested from eight repositories. The 
records are organized and/or mapped through 
the correspondence table into four datasets. The 
classification algorithms are trialed and presented 
with the finest ones in the result section.

5.1	Dataset and mapping
The repositories in Open Access Australasia 

(ht tps : / /oaaustra las ia .org/directory- type/
open-repositories/) were examined for the 
downloadability of bibliographical records via 
OAI-PMH (Open Archives Initiative Protocol 
for Metadata Harvesting). Bibliographical 
records were downloaded from eight institutional 
repositories, which are listed in Table 3, between 

Ju ly 27th , 2023, and Ju ly 31s t , 2023. The 
documents were selected with the following 
criteria: (1) records with explicit codes and names 
of the FoR2008 and FoR2020 classes; (2) only the 
genre of the dissertation, thesis, conference, and 
journal article, as well as the proper description of 
an academic book; (3) more than 200 characters of 
the cleaned abstract text. The cleaning procedure 
removes the irrelated text, such as DOI, funding, 
acknowledgment, copyright announcement, and 
embargo period.

A document from the plain dataset of one 
scheme is incorporated into the mapped dataset of 
the other scheme if and only if all classes of that 
document are definitely mapped. The following 
is the mapping procedure for a document. 
The ground truth of a document’s classes is 
represented by truthFoR2008 ∈ 2

|CSFoR2008| for FoR2008, 
or truthFoR2020 ∈ 2

|CSFoR2020| for FoR2020.

Table 3.   Harvested Repositories

Institute OAI-PMH URL fetched 
records

FoR2008 
records

FoR2020 
records

Australian National University https://openresearch-repository.anu.
edu.au/oai/request

270,902 92,108 4,742

James Cook University https://researchonline.jcu.edu.au/cgi/
oai2

54,681 36,170 17,126

Lincoln University https://researcharchive.lincoln.ac.nz/
dspace-oai/request

7,432 3,881 848

Massey University https://mro.massey.ac.nz/oai/request 15,691 1,022 1,641

University of Canterbury https://ir.canterbury.ac.nz/oai/request 23,153 3,810 5,555

University of New England https://rune.une.edu.au/uneprodoai/
request

31,492 26,934 17,456

University of Southern 
Queensland

https://eprints.usq.edu.au/cgi/oai2 29,356 0 26,571

Victoria University https://vuir.vu.edu.au/cgi/oai2 30,985 25,930 3,734
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truthk
For2008 = 	1	 if the document is labeled with the FoR2008 class k

	 0	 otherwise

truthk
For2020 = 	1	 if the document is labeled with the FoR2020 class k

	 0	 otherwise

The mapped vector is mappedFoR2020 ∈ 2
|CSFoR2020| or 

mappedFoR2008 ∈ 2
|CSFoR2008|. Let ΨFoR2020 = truthFoR2008 

× MAP or ΨFoR2008 = truthFoR2020 × MAPTranpose. If 
Σ

|CSFoR2020|

k=1  Ψk
FoR2020 equals to Σ|CSFoR2008|

k=1  truthk
FoR2008, it 

implies that all FoR2008 classes in that document 
are definitely-mapped. As a result,

mapped j
FoR2020

	 1		  if (Ψj
FoR2020 > 0) and

= 		 ( |CSFoR2020|

k=1
 Ψk

FoR2020 = |CSFoR2008|

k=1
truthk

FoR2008)
	 0		  otherwise

mapped i
FoR2008

 	 1		  if (Ψj
FoR2008 > 0) and

= 		 ( |CSFoR2008|

k=1
 Ψk

FoR2008 = |CSFoR2020|

k=1
truthk

FoR2020)
	 0		  otherwise

The dataset p08 is derived solely from the 
truthFoR2008 of al l documents , whereas m08 
incorporates both truthFoR2008 and mappedFoR2008. 
In contrast, p20 is built from truthFoR2010, while 
m20 uses both truthFoR2010 and mappedFoR2020. Each 
dataset is partitioned into subsets based on three 
hierarchical levels. By default, the mapping matrix 
MAP is a linear operator that transforms field 
classes from FoR2008 to FoR2020. The mapping 
matrix can be across the scheme hierarchy. For 
example, MAP ∈ 2

|FoR2008 field classes|×|FoR2020 division classes| 
can map a document’s classes from the FoR2008 
field level to the FoR2020 division level with 
the above mapping procedure. A class may be 
possibly-mapped at the field level but definitely-
mapped at the division level. If all of a document’s 

classes are definitely mapped at the division level, 
the document is included in the division-level 
subset of the mapped dataset. The same criterion 
applies to the group-level and field-level subsets.

For each dataset, the documents in the field-
level subset must not be labeled with any field-
level miscellaneous, group-level, or division-
level classes. Similarly, the documents in the 
group-level subset must not be labeled with any 
group-level miscellaneous, or division-level 
classes. The field-level miscellaneous classes 
are viewed as the group-level classes since we 
observed that some documents labeled with 
miscellaneous field classes actually refer to the 
group classes. Each dataset is split into a training 
set containing 80% of documents and a validation 
set containing the remaining 20%. All documents 
in sparse classes, which contain less than five 
documents, are designated to the training set. 
Each class containing more than five documents 
was iteratively sampled to ensure the percentage 
of the documents in the training set ranged from 
76% to 84%. To avoid over-sampling the multi-
label documents, the probability of a document to 
be sampled in the training set was 1 – (1 – 0.8)1/k, 
where k is the document’s number of classes. The 
sampling process proceeds sequentially from the 
field level subset to the division level subset to 
ensure complete separation between training and 
validation sets across all three hierarchical levels. 
Consequently, 179,431 documents are organized 
into two plain datasets, i.e., p08 and p20, and two 
mapped datasets, i.e., m08 and m20.

5.2	Classifier
Classifiers are built using SVM, SciBERT, 

and ModernBERT models. Figure 1 illustrates 
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the training approaches. Linear kernel SVM are 
trained using the Scikit-learn library (https://scikit-
learn.org/). Uncased SciBERT (scibert_scivocab_
uncased), ModernBERT-base, and ModernBERT-
large are downloaded from the Hugging Face 
(https://huggingface.com/) and finetuned using 
PyTorch 2.5.1 on an NVIDIA RTX A6000. The 
model parameters are fully finetuned and only 
the first token, [CLS], of the output sequence was 
utilized for our downstream classification task, 
which was implemented by appending a fully 
connected layer and a sigmoid layer to the special 
classification token. The dimension of an output 
token is 768 for both SciBERT and ModernBERT-
base, and 1,024 for ModernBERT-large. The fine-
tuning process for BERT models was conducted 
across varying maximum epochs (1, 2, 4, 8, 16, 24, 
or 32) with a batch size of 32, employing binary 
cross-entropy as the loss function, AdamW as the 
optimizer, and a learning rate of 5e-5. The threshold 
of each class is determined by iterating over all 
in-class scores in the training set to maximize 
the F1 measure of the training set. Classes with 

scores exceeding their thresholds are selected as 
predictions. If no scores exceed the thresholds, the 
class with the highest score is predicted.

6.	Result
The initial section covers the preparation task 

of organizing the datasets. The second section is the 
evaluation of traditional machine learning and deep 
learning classifiers. The effect of class size and model 
parameter size is presented in the final section.

6.1	Dataset profiling
179,431 documents are apportioned into the 

four datasets as shown in Table 4. The percentage 
of one-class documents ranges from 49.1% (field-
level subset of p20) to 83.5% (division-level 
p08). 75.0% (field-level p20) to 98.1% (division-
level p08) of documents are assigned within 2 
classes, whereas 97% (field-level p20) to 99.9% 
(division-level p08) of documents are assigned 
within 3 classes. The plain datasets are augmented 
with class mapping, resulting in an expansion 

Figure 1.   Training Approaches

Note. The dashed rectangles are finetuned or trained in this study. |class| denotes the number of classes.
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of both the number of documents and the field-
level classes. When mapping from FoR2020 
to FoR2008, 63% (32,589/51,618) of the p20 
documents are mapped into 975 FoR2008 classes. 
On the contrary, 49% (44,159/89,745) of the p08 
documents are mapped into 747 FoR2020 classes. 
The field-level classes are most affected by data 
insufficiency, with 37 (m08) to 414 (p20) field 
classes having too few documents to be sampled 
in the validation sets. Figure 2 illustrates that the 
1~4 document range contains the highest number 
of field classes for both p20 and m20 datasets. 
By comparing plain and mapped datasets, the 
number of classes containing fewer than 64 
documents decreases, while the number of classes 
with more than 65 documents becomes enriched. 
All 17 newly added classes in the mapped 

datasets contain fewer than 16 documents, with 
9 classes having less than 5 documents. This 
implies that most of the increase in the number 
of classes within the validation sets originates 
from a combination of plain and mapped sources. 
The mean number of documents per field class 
increases from 123.7 in p08 to 175.7 in m08, and 
from 57.4 in p20 to 93.0 in m20. The average 
document incrementation per mapped class is 58.3 
when mapping from FoR2020 to FoR2008, while 
it reaches 77.7 when mapping from FoR2008 
to FoR2020. The testing set strategy is not 
employed since 35.3% (p20) and 30.1% (m20) of 
the FoR2020 field classes have less than 10 total 
documents. The average document length is 210 
words, with a median of 191 words. 4,358 (2%) 
documents exceed 512 words. The deep learning 

Table 4.   Profile of Datasets

Scheme Dataset Level Number of documents in # of Classes # of Class per 
Doc.Training set Validation set

A
N

ZS
R

C
 2

00
8 

Fo
R

 
(F

oR
20

08
) p08

Division 98,553 26,600 22 1.19

Group 93,355 23,416 135 1.32

Field 74,778 14,967 1,066 (955) 1.47

m08

Division 138,637 36,720 22 1.25

Group 127,601 32,139 135 1.39

Field 102,197 20,137 1,078 (1,041) 1.55

A
N

ZS
R

C
 2

02
0 

Fo
R

 
(F

oR
20

20
) p20

Division 55,877 14,512 23 1.37

Group 52,211 12,922 189 (187) 1.62

Field 43,812 7,806 1,627 (1,213) 1.81

m20

Division 118,967 30,150 23 1.27

Group 104,321 25,474 189 (187) 1.45

Field 80,314 15,463 1,632 (1,286) 1.59
Note.  The number of classes in the validation set is noted in parentheses if it differs from the number of 

classes in the training set.
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models in our setup support up to 512 tokens and 
the documents exceeding these token length limits 
are truncated. By enriching datasets with class 
mapping, the next section evaluates the classifiers 
trained on both the plain or mapped datasets.

6.2	Classifier performance
The classification performance of SVM, 

SciBERT, ModernBERT-base, and ModernBERT-
large is listed in Table 5. ModernBERT-large 
demonstrates superior performance in terms of 
validation F1 score across nearly all evaluated 
datasets. SVM with TF-IDF representation is 
selected for its superior performance compared to 
experimented traditional machine learning models, 
which are KNN, Logistic Regression, XGBoost, 
Linear Classification, Random Forest, Decision 
Tree, and Naïve Bayes, listed in descending order 
performance based on the validation macro F1-
score. SVM outperforms ModernBERT-base at the 
field-level subsets. Nevertheless, SVM remains 
a practical solution for research classification 
for the online database as of 2023 (Porter et al., 

2023). In our experiments, SciBERT performed 
comparably to BERT-large at the division and 
group level. Furthermore, field-level classifiers 
using the original BERT did not demonstrate 
notable performance. Garcia-Silva and Gomez-
Perez (2021) employed 5-fold cross-validation 
that SciBERT achieved a macro F1 score of 0.838 
at the division level, while BERT, SciBERT, and 
SVMs achieved scores ranging from 0.808 to 0.911 
at the group level classes, whereas fastText and 
GPT-2 were left behind. The relatively inferior 
macro F1 score in our setting may partly due to 
the fact that the bibliographic records are from 
eight repositories, and class labeling may not be 
inconsistent by various parties. However, SVM 
falls behind BERT in our study, highlighting a 
methodological concern for studies that train on 
the machine-classified records from the online 
database. Our experiment exhibits that BERT 
variants outperform all other traditional machine 
learning methods at the division and group levels. 
Arhiliuc et al. (2025) reported a macro F1 score 
of 0.70 for BERT and 0.65 for SVM on 42 FORD 

Figure 2.   Datasets Distribution
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Table 5.   Average Precision, Recall, and Macro F1-Score

Level Dataset

SVM SciBERT

Precision, recall, F1-score of Precision, recall, F1-score of

Training set Validation set Training set    Validation set

Division

p08 .893 .923 .908 .661 .677 .668 .803 .775 .788 .727 .698 .711

m08 .864 .901 .882 .657 .681 .668 .796 .773 .784 .725 .708 .715

p20 .915 .933 .924 .673 .667 .669 .999 .999 .999 .706 .710 .707

m20 .882 .905 .893 .686 .686 .685 .802 .787 .793 .737 .720 .727

Group

p08 .935 .962 .948 .527 .463 .481 .995 .987 .991 .512 .522 .511

m08 .912 .942 .926 .535 .485 .502 .998 .996 .997 .538 .533 .530

p20 .962 .976 .969 .540 .433 .471 .973 .967 .968 .514 .491 .494

m20 .935 .958 .946 .530 .449 .475 .993 .983 .987 .533 .508 .512

Field

p08 .987 .995 .991 .383 .278 .303 .977 .966 .970 .368 .310 .318§

m08 .979 .990 .985 .394 .286 .312 .945 .931 .935 .365 .320 .325

p20 .995 .998 .996 .341 .244 .265 .931 .918 .918 .301 .247 .252

m20 .990 .996 .993 .346 .248 .271 .944 .935 .933 .329 .277 .284

ModernBERT-base ModernBERT-large

Division

p08 .786 .773 .778 .716 .698 .706 .793 .780 .786 .723 .712 .716§

m08 .781 .769 .774 .722 .708 .713 .799 .775 .785 .735 .714 .723§

p20 .771 .763 .766 .709 .695 .701 .999 .999 .999 .720 .714 .716§

m20 .780 .769 .773 .729 .710 .718 .794 .787 .789 .745 .727 .734§

Group

p08 .676 .675 .671 .501 .499 .494 .593 .624 .602 .516 .551 .524§

m08 .700 .691 .693 .545 .512 .520 .625 .637 .628 .545 .556 .547§

p20 .852 .956 .900 .511 .462 .474 .975 .978 .976 .557 .484 .507§

m20 .983 .981 .982 .531 .480 .496 .563 .591 .569 .524 .527 .518§

Field

p08 .876 .855 .857 .331 .292 .292 .970 .978 .972 .366 .303 .314

m08 .784 .748 .754 .323 .301 .293 .799 .804 .795 .386 .343 .345§

p20 .932 .915 .916 .306 .251 .256 .938 .933 .930 .327 .277 .279§

m20 .872 .834 .840 .307 .266 .267 .788 .788 .769 .353 .313 .311§
Note. The bold entries suffixed by § are the largest macro F1 score of the validation sets.
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classes, with metrics similar to the division level 
metrics in our study. Wu et al. (2023) trained 
with 76 to 600 records per division class and 
reported accuracy values between 0.60 to 0.70. 
In contrast, our study achieves all accuracies 
exceeding 0.941. In summary, ModernBERT-large 
demonstrates superior performance compared 
to alternative architectures across the majority 
of datasets and hierarchical classification levels, 
with the sole exception being the p08 dataset 
where SciBERT maintains a marginal advantage. 
The consequence of c lass mapping us ing 
ModernBERT-large is analyzed in greater detail 
in the following sections.

ModernBERT requires fewer or an equivalent 
number of epochs to achieve optimal validation F1 
scores on mapped datasets compared to their plain 
counterparts, potentially reducing overall training 
time requirements. Table 6 presents the training 

epochs, maximum epoch, and minutes per epoch. 
Training epoch duration is primarily influenced 
by dataset volume, model architecture, and model 
parameter size. As shown in Table 6, the training 
time per epoch is proportional to the dataset 
volume. When accounting for model architecture, 
ModernBERT-base exhibits approximately half 
the per-epoch training time of SciBERT despite 
having a comparable parameter count. Similarly, 
ModernBERT-large achieves nearly a twofold 
reduction in training time per epoch compared 
to BERT-large. The number of training epochs 
is proportional to the number of classes. Lower 
levels, which correspond to a greater number of 
classes, generally require more training epochs. As 
to the total training time, the division and group 
subsets of m20, as well as the field subset of m08, 
exhibit fewer total time comparing to their plain 
counterparts. While class mapping increases both 

Table 6.   BERT Training Time and Epoch

SciBERT (110 Million) ModernBert-base 
(149M)

ModernBert-large 
(395M)

BERT-large
(336M)

D
iv

is
io

n

p08 2nd epoch/2 Max. epoch 
(20 mins per epoch)

2/2 (11) 2/2 (27) (61 mins per epoch)

m08 2/2 (28) 2/2 (15) 2/2 (39) (86)

p20 8/8 (11) 2/2 (7) 7/8 (16) (34)

m20 2/2 (24) 2/2 (13) 2/2 (33) (73)

G
ro

up

p08 12/16 (19) 3/4 (10) 2/2 (25) (57)

m08 13/16 (26) 3/4 (14) 2/2 (35) (78)

p20 11/24 (10) 10/16 (6) 6/16 (15) (32)

m20 12/16 (21) 8/24 (12) 2/2 (30) (64)

Fi
el

d

p08 20/32 (15) 7/24 (8) 8/16 (20) (45)

m08 16/32 (21) 6/24 (11) 5/8 (28) (62)

p20 25/32 (9) 9/32 (5) 8/16 (13) (26)

m20 21/32 (16) 7/16 (9) 6/16 (23) (49)
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dataset size and per-epoch training time, it can, 
in some cases, reduce the overall time required to 
achieve optimal performance.

Class mapping enhances the validation F1 
scores as illustrated in Figure 3. At the division 
level, the F1 score improvement between p08 and 
m08 is at most 0.007, whereas the improvement 
between p20 and m20 is at least 0.016. This may 
be due to the dataset size increasing by 112% 
(78,728 documents) in m20, compared to only 
a 40% (50,204 documents) increase in m08. 
FoR2020, as a newer scheme, has relatively fewer 
training documents, which can be supplemented 
through class mapping. In contrast, p08 already 
has a sufficient number of documents, making 
class mapping less effective in improving 
classifier performance. While focusing on the 
best-performing model, the validation F1-score 
improvements of ModernBERT-large in FoR2008 
increased by 1.0%, 4.4%, and 9.9% at division, 
group, and field levels respectively. On the 
contrary, the enhancements in FoR2020 are 2.5%, 
2.2%, and 11.5% respectively.

6.3	Class size and model parameter size
Class size, which is the number of documents 

in a class, demonstrates a moderate positive 
correlation with the validation F1 score at the field 
level. Specifically, Pearson correlation coefficients 
are 0.36 for p08, 0.33 for m08, 0.35 for p20, and 
0.31 for m20 in the ModernBERT-large model. 
This implies that larger document quantities 
generally lead to higher performance. Figure 4 
illustrates the relationship between class size and 
validation F1 scores. Classes containing fewer than 
16 documents consistently show extremely poor 
performance, with F1 scores predominantly at 0, 
resulting in both lower and upper quartiles also at 0. 
The average F1 score consistently increases with 
class size, showing progressive improvement as 
class size grows, with the exception of the bucket 
exceeding 1,025 documents. The number of 
classes exceeding 1,025 documents is rare that 10 
classes in p08, 17 in m08, 3 in p20, and 10 in m20. 
High-volume classes with F1-scores below 0.5 
are listed in Table 7. Most augmented classes are 
improved, except for 050202 and 410406, which 

Figure 3.   Growth of Validation F1 Score
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Table 7.   Validation F1 Scores and Document Counts of Selected High-volume Classes

plain dataset mapped dataset

050209 Natural resource management 0.244 (970) 0.313 (1,269)

410406 Natural resource management 0.311 (483) 0.236 (1,108)

050205 Environmental management 0.318 (1,412) 0.296 (1,412)

410404 Environmental management 0.219 (1,047) 0.252 (1,877)

050202 Conservation and biodiversity 0.475 (2,019) 0.401 (2,697)

410401 Conservation and biodiversity 0.393 (1,012) 0.470 (2,288)

130103 Higher education 0.276 (743) 0.425 (1,967)

390303 Higher education 0.447 (1,578) 0.534 (1,914)

160104 Social and cultural anthropology 0.412 (893) 0.414 (1,075)

440107 Social and cultural anthropology 0.363 (220) 0.304 (220)

111706 Epidemiology 0.476 (1,647) 0.524 (2,126)

Figure 4.   Document Size and Validation F1 Score

Note. �The horizontal lines denote the average F1; the vertical lines denote the range between the lower 
quartile and the upper quartile.

are augmented with worse-performed documents. 
These findings suggest that low-quality data 
can negatively impact model performance. 
Overall, the validation F1-score tends to increase 
proportionally with the class size.

Class mapping improves the average F1-
score not only for the augmented classes but also 
for the non-augmented ones in ModernBERT-
large as Table 8 demonstrates. In ModernBERT-
base, only the F1-scores of the augmented classes 
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Table 8.   Average F1 Score of Augmented and Non-augmented Classes

P08 m08 p20 m20

ModernBERT-base
Augmented class 0.292 0.297 0.285 0.308

Non-augmented class 0.217 0.212 0.207 0.204

ModernBERT-large
Augmented class 0.306 0.348 0.303 0.353

Non-augmented class 0.197 0.260 0.207 0.239

showed slight improvements of 0.005 and 0.023, 
while the performance of the non-augmented 
classes declined by 0.003 and 0.005. In contrast, 
ModernBERT-large demonstrated notable gains, 
with non-augmented classes improving by 0.063 
and 0.032, and augmented classes achieving 
increases of 0.042 and 0.050. This suggests that 
the model size plays a role in enhancing the 
effectiveness of mapping.

The largest groups in Figure 5 are the zero 
F1 classes, which continues to impede the 
overall performance of field-level classifiers on 
validation sets. The larger model exhibits more 
zero F1 classes in plain datasets compared to the 
base model. However, mapped datasets show a 
significant reduction in these zero F1 classes, 
particularly when using the large model. Tables 
9 and 10 detail the transition of classes between 
F1-score groups by ModernBERT-large. Zero 
F1 classes numbered 220 in p08, 287 in m08, 
400 in p20, and 510 in m20. A transition matrix 
is defined as T ∈ 12×12. Ti,j denotes the number 
of classes which are categorized into the group 
i of the plain dataset and into the group j of 
the mapped dataset. When transitions occur, 
the F1 score between 0.4 and 0.5 (T7,7) serves 
as a critical inflection range. Classes with F1 
scores below 0.4 predominantly shift to higher 

performance groups, as Σk-1
j=1  Tk,j < Σ

12
j=k+1 Tk,j, ∀k 

< 7, while those with F1 scores exceeding 0.5 
predominantly shift to lower performance groups, 
as Σ

k-1
j=1  Tk,j > Σ

12
j=k+1 Tk,j, ∀k > 7. The steady state 

derived from the Markov chain analysis, which 
is s ∈ 12 such that s × U = s, where Ui,j = Ti,j/Σ

12
j=1

Ti,j and displayed in the bottom row of the tables, 
reveals that the performance group with F1 scores 
between 0.4 and 0.5 will emerge as the dominant 
category through iterative class mapping process. 
Although 25% of the classes in m20 have zero F1 
scores, this ratio is expected to decrease to 16% 
through additional class mapping. By summing 
the products of each steady-state share and the 
midpoint of its corresponding range, the estimated 
validation F1 score for ModernBERT-large is 
0.452 for FoR2008 and 0.363 for FoR2020. Since 
FoR2020 is a presently mandated revision that 
will incorporate new records, the macro F1 score 
is expected to be improved with the increasing 
document counts in the future.

7.	Conclusion
This study demonstrates the effectiveness 

of class mapping as a data fusion technique 
to improve machine learning-based research 
classification. SVM, SciBERT, ModernBERT-
base, and ModernBERT-large are used to train 
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classifiers for the ANZSRC 2008 FoR (FoR2008) 
and ANZSRC 2020 FoR (FoR2020) research 
classification schemes across three hierarchical 
levels. By leveraging the definitely-mapped 
relations between FoR2008 and FoR2020, 63% 
of FoR2020 documents are incorporated into 
the mapped dataset of FoR2008, while 49% 
of FoR2008 documents are integrated into the 
mapped dataset of FoR2020. Although the 
mapped datasets still contain many low-volume 
classes, particularly in FoR2020, class mapping 
substantially increases both the number of 
documents and the range of represented classes, 
supporting improved classifier performance. 

Among the evaluated models, ModernBERT-
large consistently delivers strong performance, 
particularly on mapped datasets. SVM remains 
a practical baseline, offering competitive results 
comparable to base-sized BERT variants at 
the field level. Porter et al. (2023) introduced 
recategorization strategies, including class 
mapping, but did not provide empirical validation. 
In contrast, our study provides concrete metrics 
to evaluate the effectiveness of class mapping, 
addressing a gap in the literature where research 
classification involving field classes has not been 
previously explored (Wu et al., 2021). Consistent 
performance gained across all three scheme levels 

Figure 5.   Classes Group by the Validation F1-score
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Table 9.   Transition of Validation F1-score from p08 to m08
m08

p08 Excluded [0,0] (.0,.1] (.1,.2] (.2,.3] (.3,.4] (.4,.5] (.5,.6] (.6,.7] (.7,.8] (.8,.9] (.9,1.0] Total

Exclud. 35 58 4 2 9 2 5 3 2 3 123
[0,0] 2 140 5 25 35 18 27 9 14 3 5 4 287
(.0,.1] 1 3 5 1 1 11
(.1,.2] 4 19 18 18 10 1 70
(.2,.3] 4 1 20 30 26 20 13 4 1 119
(.3,.4] 4 1 9 21 22 39 4 4 104
(.4,.5] 6 3 18 22 50 31 13 2 145
(.5,.6] 1 2 3 8 20 40 16 3 93
(.6,.7] 3 1 1 3 2 13 31 12 3 69
(.7,.8] 1 4 8 15 3 31
(.8,.9] 1 2 3 4 4 14
(.9,1.0] 4 1 2 3 1 1 12
Total 
Share

37
.03

220
.20

12
.01

82
.08

136
.13

121
.11

181
.17

119
.11

98
.09

46
.04

18
.02

  8
.01 1,078

Markov .00 .05 .01 .06 .11 .12 .19 .18 .16 .09 .02 .00

Table 10.   Transition of Validation F1-score from p20 to m20
m20

p20 Excluded [0,0] (.0,.1] (.1,.2] (.2,.3] (.3,.4] (.4,.5] (.5,.6] (.6,.7] (.7,.8] (.8,.9] (.9,1.0] Total

Exclud. 334 59 1 1 3 8 1 6 2 4 419
[0,0] 12 279 5 22 60 30 46 10 28 5 5 8 510
(.0,.1] 2 2 1 5
(.1,.2] 7 5 11 15 16 9 3 3 1 70
(.2,.3] 13 4 13 31 18 32 6 2 119
(.3,.4] 9 2 8 20 21 26 8 4 1 1 100
(.4,.5] 19 1 9 18 24 52 21 12 2 3 1 162
(.5,.6] 2 4 8 7 16 25 16 3 1 82
(.6,.7] 7 1 3 10 19 16 17 6 6 2 87
(.7,.8] 1 1 3 6 11 6 5 1 34
(.8,.9] 2 1 1 2 6 11 9 32
(.9,1.0] 3 2 1 1 2 3 12
Total
Share

346
.21

400
.25

17
.01

71
.04

160
.10

131
.08

214
.13

98
.06

106
.06

38
.02

32
.02

19
.01

1,632

Markov .02 .16 .01 .07 .14 .13 .21 .11 .09 .03 .03 .01
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in four models is exhibited by comparisons of 
validation F1 scores between plain and mapped 
datasets. Class size shows a moderate correlation 
with the validation F1 score, and some of classes 
are augmented via class mapping. On the contrary, 
the performance of non-augmented classes is 
also generally improved in ModernBERT-large 
but not enhanced in ModernBERT-base. The 
advantage of class mapping on non-augmented 
classes is the emergent ability, which emerges 
only in larger models (Wei et al. 2022). This 
study recommends leveraging a larger LLM 
in conjunction with class mapping to enhance 
the effectiveness of research classification 
models. While larger models and more training 
data increase the time per epoch, they require 
fewer epochs to reach optimal performance and 
sometimes reduced total training time. Although 
decoder-based Transformer architectures remain 
dominant as of 2025, this study advocates for 
the development of larger encoder models to 
enable more effective research classification in 
the future. Inconsistent classification is the most 
significant limitation encountered, as it adversely 
impacts the performance. For example, Class 
130103 Higher Education erroneously includes 
articles based solely on studies conducted in 
college or university settings, which do not 
accurately reflect the intended scope of the class. 
This study employs only the definitely-mapped 
class relations for dataset augmentation, while 
the possibly-mapped relations may be explored 
in future work, such as ensemble modeling or 
contrastive learning.
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應用類別對照之資料融合方法於機器學習研究分類

Exploring Class Mapping as Data Fusion Technique in  
Machine Learning for Research Classification

黃建智1　陳光華2

Chien-Chih Huang1, Kuang-Hua Chen2

摘　要

訓練機器學習分類模型須充足且高品質的資料，本研究探討類別對照作為資料融合

策略，發展研究分類之機器學習模型，以2008年版與2020年版之澳洲與紐西蘭標準研究

分類表為研究標的，從8家機構典藏系統蒐集179,431筆已分類文件，對二版本分類表分

別建立原始資料集，及以類別對照方式擴增之資料集。結果顯示49%的2008年版文件可

明確對應至2020年版，反之則為63%。進一步以SVM、SciBERT、ModernBERT-base與

ModernBERT-large建立分類模型，相較僅採用原始資料集，各模型經擴增資料集訓練後，

分類效能均獲改進；以ModernBERT-large表現最為顯著，其大類層級提升1.0%或2.5%，

中類層級增益4.4%或2.2%，小類層級改善9.9%或11.5%，未擴增之類別亦提高32.0%或

15.5%。整體而言，類別對照可用於擴展訓練資料，提升自動研究分類效能。

關鍵字： 互通性、概念間對應、機器學習、研究分類
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