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Abstract

Access to sufficient, high-quality data is essential for effectively training and validating machine
learning classifiers. This study investigates class mapping as a data fusion strategy to enhance training
data for research classification. Two versions of the Australian and New Zealand Standard Research
Classification, ANZSRC 2008 FoR and ANZSRC 2020 FoR, are used to organize 179,431 documents
from eight institutional repositories into plain and mapped datasets. Each dataset is divided into
subsets corresponding to the division, group, and field levels of the classification schemes. Results
show that 49% to 63% of documents are successfully mapped between schemes. Classifiers by
Support Vector Machines (SVM), SciBERT, ModernBERT-base, and ModernBERT-large are trained
to assess the effectiveness of this data fusion approach on classification performance. All models show
improved performance at the three levels. ModernBERT-large achieved the greatest performance
gains, with the improvements in validation F1 scores of 1.0% and 2.5% at the division level, 4.4% and
2.2% at the group level, and 9.9% and 11.5% at the field level. An emergent ability was observed, as
performance in non-augmented classes improved with ModernBERT-large but not with ModernBERT-
base. Overall, this study demonstrates that class mapping effectively enriches training datasets,
enhances classification performance, and underscores the importance of model size and architecture.
These findings offer a practical and scalable strategy for improving machine learning performance in
research classification tasks.
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1. Introduction correspondence table as a data fusion strategy to

develop classifiers for two research schemes. The
Research classification is served for Australian and New Zealand Standard Research
Classification (ANZSRC) is a classification

system developed to measure and analyze the

bibliographic and administrative purposes
(Hjgrland & Gnoli, 2022) for various or specific

regions or disciplines. While evaluating or research and experimental development (R&D)

comparing the research output collections from L . .
p & p statistics in Australia and New Zealand (Australian

incompatible schemes, arranging collections into Bureau of Statistics, 2020b: Commonwealth of
Australia and New Zealand, 2020). ANZSRC was

first released in 2008 and revised in 2020 to keep

a unified classification scheme is an ordinary
approach. The correspondence table is a common

method in Library and Information Science (LIS) up with the pace of contemporary research. Fields

to interoperate two schemes. We will use the . g
P of Research (FoR) is one of three classifications

'? Department of Library and Information Science, National Taiwan University, Taipei, Taiwan
* Corresponding Author: Kuang-Hua Chen, E-mail: khchen@ntu.edu.tw

119



Journal of Library and Information Studies 23:2 (December 2025)

in the ANZSRC and the fields are categorized
according to “common knowledge domains
and/or methodologies” (Australian Bureau of
Statistics, 2020b). ANZSRC FoR is not only used
in Australia and New Zealand but also globally
employed by Springer Nature SciGraph (Pasin,
2017) and Dimensions (Digital Science and
Research Solutions, 2022a, 2022b). Dimensions
stated that ANZSRC FoR encompasses all
academic disciplines at a general level, allowing
for comparisons across various research areas.
Although ANZSRC FoR is designed to include all
research areas, the scheme is inevitably outdated
and is revised to keep the immediacy. However,
a forthcoming document classified in the revised
scheme cannot be directly compared with those in
the original scheme. Only 9% of the documents
in our dataset are classified in both two revisions.
Collection evaluation necessitates reclassification
between ANZSRC 2008 FoR (FoR2008)
and ANZSRC 2020 FoR (FoR2020), where
reclassification efforts can be optimized through
systematic class mapping.

This study aims to explore the interaction
among three interconnected components:
bibliographic records, class mapping, and
classification models. The primary objective is
to enrich plain datasets through class mapping
between schemes. The second one is to
systematically evaluate various machine learning
algorithms to identify optimal classifiers for both
plain and mapped datasets. The third one is to
examine the factors that influence improvements
in classification performance. The class mapping
established in the correspondence table delineates
relationships between classes in one scheme

and their counterparts in the other scheme, with

each class potentially corresponding to multiple
classes across schemes. The FoR2020 scheme is
so updated that the records of some classes are
insufficient for training classifiers. This shortage
is partially mitigated by augmenting records
from FoR2008. The field of Al has repeatedly
“reinvented the wheel” to address challenges that
the LIS field had already developed solutions for
years earlier (Dahlberg, 1993). Interoperability, a
concept implemented in LIS well before the advent
of the internet (Zeng, 2019), is operationalized
in this study through a correspondence table
to enrich bibliographic records for developing

machine learning classifiers.

2. Related Studies

The first section introduces the research
classification and the ANZSRC. The second
section presents the text classification by machine
learning. The document and class interoperability

are discussed in the third section.

2.1 Australian and New Zealand Standard

Research Classification

Research classification systems are purposed
for reporting research activities (Hjgrland &
Gnoli, 2022) by various organizations or countries.
Some classification systems (e.g., The Flemish
Research Discipline Classification, Vlaamse
Onderzoeksdiscipline Standaard, VODS) may be
termed “discipline classification” but essentially
refer to research classification. Disciplines are
tightly connected to the phenomenon of teaching
and research, which are two main missions
of scholars in modern research universities

(Hammarfelt, 2020). As to the teaching mission,
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the International Standard Classification of
Education (ISCED) is one of the universal
education classification systems organized by
the education levels and fields (United Nations
Educational, Scientific and Cultural Organization,
2015), which differs from the research activities.
Hider and Coe (2022) mapped university faculty
structure to the bibliographic, education, and
research classification systems. 56.7% of the
university structures are mapped to the Dewey
Decimal Classification (DDC), 49.8% to the
Library of Congress Classification (LCC), 61.2%
to the Australian Standard Classification of
Education (ASCED), and 54.2% to ANZSRC. The
varied ratios depict that those classification systems
are not aligned since the disciplines and fields are
“sliced and diced” in the universities. Mapping
collections across institutions, libraries, or disciplines
requires a unified system. Research classification
offers a viable solution, as it strikes a balance
between the specificity of bibliographic classification
and the broad scope of educational classification.
This study adopts the ANZSRC FoR as
the targeted research classification system,
as it aligns with the Frascati Manual of the
Organisation for Economic Co-operation and
Development (OECD) (Australian Bureau of
Statistics, 2020b; Hjgrland & Gnoli, 2022;
OECD, 2015) and could be crosswalked to other
classification schemes. The Frascati Manual of
the OECD defines the most globally recognized
standards and recommendations to collect and
report comparable statistics about research
and experimental development. The ANZSRC
is internationally applicable and leveraged or
referred by other schemes such as Canadian

Research and Development Classification (CRDC)

in Canada (Legendere, 2019), or the Flemish
Research Discipline Classification Standard in
Belgium (Vancauwenbergh & Poelmans, 2019).
Legendere (2019) asserts that the reference to the
Frascati Manual and ANZSRC aims to increase
computability, collaboration, and international
standards alignment. The correspondence table
enables ANZSRC to be interoperable with
classification schemes based on the Frascati
Manual, providing a foundation for mapping
to additional schemes. The databases such as
Springer Nature SciGraph (Pasin, 2017) and
Dimensions (Digital Science and Research
Solutions, 2022a, 2022b) employ ANZSRC FoR to
classify the curated documents. Bornmann (2018)
manually inspected the classification results of his
199 articles in Dimensions, and he found that “most
of the papers seem misclassified.” (p. 639) However,
automatic classification studies for ANZSRC FoR
are needed since manual classification for a huge
number of documents is infeasible. Our study
increases the number of training documents to
improve the classification performance.

ANZSRC was established jointly by the
Australian Bureau of Statistics and Statistics New
Zealand, and contains three classifications for
the measurement and analysis of research and
experimental development in Australia and New
Zealand. Preceded by the Australian Standard
Research Classification (ASRC) of 1998, the
ANZSRC was published in 2008 and revised in
2020. Three ANZSRC classifications are: (1)
Type of Activity (TOA), which categorizes the
types of research effort; (2) Fields of Research
(FoR), which categorizes the common knowledge
domains and/or methodologies; (3) Socio-
economic Objective (SEO), which categorized
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the intended purpose or outcome perceived
by the authors (Australian Research Council,
n.d.). ANZSRC FoR has a hierarchical structure
of three levels, which are named Divisions,
Groups, and Fields. FoR2020 establishes the
Indigenous Studies Division, eliminates the
Technology Division, and tears the Medical and
Health Science into two more focused Divisions
(Commonwealth of Australia and New Zealand,
2020). A division class is represented by a two-
digit number, and a group class is represented
by a four-digit number, of which the first two
digits stand for the belonging division class. A
field class is represented by a six-digit number in
which the first two digits refer to the belonging
division class, and the first four digits signify
the belonging group class. The division classes
of FoR2008 are numerated from 01 to 22. In
contrast, the division classes of FoR2020 are
numerated from 30 to 52. Class number ending
in 99 denotes a miscellaneous class, which is
designed to include not-elsewhere-classified
topics, including cutting-edge discovery. Macauley
et al. (2011) discovered that disproportionately
high numbers of theses in some group classes are
classified into miscellaneous classes, and they
suggested the classification by authors, as well
as the update of the legacy scheme. FoR2008
has 22 divisions, 157 groups, and 1,238 fields.
FoR2020 has 23 divisions, 213 groups, and 1,967
fields. The number of groups or fields growing
over time indicates the later schemes extended
to include new topics. The Australian Bureau of
Statistics offers correspondence tables including
the table between FoR2008 and FoR2020, from
which the mapping relations between schemes

are derived. The Research Excellence Branch

of the Australian Research Council conducted a
manual classification task (Macauley et al., 2011)
for classifying 9,051 Ph.D. thesis into FoR2008.
47.6% of the theses were allocated with 2 labels,
26.8% had 1 label, and 25.6% had 3 labels. They
suggested that the codes should be assigned by the
authors, who are familiar with the text content and
can allocate accurate labels. Authors, however,
may not be familiar with the scheme and may

classify better by suggesting plausible classes.

2.2 Automatic text classification

The advancement in Al technology is capable
of assisting the classification tasks for knowledge
organization systems (KOS), and the natural
language processing (NLP) methods are overtly
amended as of the 2010s (Collobert et al., 2011).
The “representation” is one of the changing
features of modern NLP. Each linguistic entity,
such as a word (e.g., Mikolov, Chen, et al., 2013),
a phrase (e.g., Mikolov, Sutskever, et al., 2013),
as well as a sentence or document (e.g., Le &
Mikolov, 2014), is represented by a real-valued
vector of the distributed representation, which
is contrary to the distributional representation
such as term frequency or TF-IDF. Word2vec and
fastText (Bojanowski et al., 2017) are popular
static embedding models that can deal with
various semantic tasks, such as text classification,
but cannot tackle polysemy. By leveraging ELMo
(Peters et al., 2018) and Transformer (Vaswani et
al., 2017), BERT (Devlin et al., 2019) generates
dynamic embedding in which the vectors of
the entities are subject to the context words.
A polysemic word is represented by relatively
dissimilar vectors if the word performs distinctive

semantics in different contexts. Modern NLP
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models are capable of distinguishing not only the
polysemy but also the sequential order of words
in a sentence that traditional bag-of-words models
cannot. Garcia-Silva and Gomez-Perez (2021)
built multi-label FoR2008 classifiers with BERT
(Devlin et al., 2019), BioBERT (Lee et al., 2020),
SciBERT (Beltagy et al., 2019), GPT-2 (Radford
et al.,2019), SVM (Sebastiani, 2002), and fastText
(Bojanowski et al., 2017) on the SciGraph dataset.
The SciBERT model achieved the highest F1 score
at the division level. Among nine selected group-
level classes, the top-performing classifiers varied:
SciBERT outperformed in five groups (Biological,
Medical and Health, Chemical, Mathematical,
and Computer Sciences), native BERT excelled in
two groups (Language and History), and SVM led
in two groups (Built Environment and Creative
Arts). ModernBERT (Warner et al., 2024), a
BERT variant like SciBERT, features architectural
enhancements and is pretrained on scientific
literature and web data, making it well-suited for
our research classification tasks. ModernBERT
provides a large model variant, which theoretically
offers improved performance. This enables a
clearer assessment of classifier effectiveness
when trained on both plain and mapped datasets.
Wu et al. (2021) trained traditional machine
learning models, including Multinomial Logistic
Regression (MLR), Multinomial Naive Bayes
(MNB), K-Nearest Neighbors (KNN), and SVM
on records from Research Data Australia (RDA) at
the division level of the FOR2008. They suggested
that the group or field level classifiers are more
suitable for practical use. S. Zhang et al. (2023)
employed ChatGPT on the RDA dataset and
demonstrated that ChatGPT did not generally
outperform MLR or KNN models. They prompted

only the division classes and exemplar articles
since prompting all field-level class headings
is too lengthy for ChatGPT 3.5. ChatGPT often
generated hallucinations that documents are
classified into non-existent classes in our trial.
The above automatic text classification studies
regarding the ANZSRC FoR dealt with division-
level or group-level classification, but no studies
achieved field-level classification of more
than 1,000 classes. Our study accomplished
the classifiers of three levels with the above-
mentioned and additional large language models
(LLM). Arhiliuc et al. (2025) conducted a multi-
label classification of journal article abstracts from
the Web of Science into 42 OECD FORD classes
using BERT, SVM, SPECTER, and GPT-3.5. They
found that BERT outperformed the other models,
followed by SVM+TFIDF, SVM+SPECTER, and
GPT-3.5. They highlighted the “scarcity of labeled
multidiscipline data”, and address the scarcity by
aggregating the records from multiple repositories

and mapping classifications from other schemes.

2.3 Interoperability

A scheme is revised to reflect advancements
in science, creating the need to reclassify labeled
articles from the legacy scheme into the new
one. Porter et al. (2023) combined bibliometric
clustering, venue subject, manual class
assignment, and direct mapping at the field-level
classes from FoR2008 to FoR2020 in Dimensions,
which employs SVM to classify at the division
and group level of the schemes. However, they
do not list any classification performance metrics.
L. Zhang et al. (2022) examined the article-level
classification consistency among three databases:
(1) Web of Science subject categories (WoS SC);
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(2) Dimensions FoR classes, which is derived
from FoR2008; (3) subject classification of
Springer Nature (SNSC). WoS SC is generated
from the citation relation. SNSC is labeled by the
authors. Articles are mapped or classified into
OECD FOS (Field of Science and Technology)
2007, which is composed of 6 major categories
and 43 minor categories. The results showed that
single-category assignment in WoS SC is generally
inappropriate, which confirmed the viewpoint
of Macauley et al. (2011) that multi-classes are
more appropriate to describe a document. Their
study demonstrated the re-classification process
via mapping relation, which defined the relations
between two documents as identical, partially
identical, and inconsistent. Our study would
formalize the relations. The classification in the
three databases is greatly inconsistent in that only
27% of papers had identical fields between the
machine-generated Dimensions FoR code and
human-judged SNSC. Since the articles authored
by Bornmann (2018) in Dimensions are mostly
misclassified, it would be ideal to boost the
classification performance before the examination
of the consistency by class mapping. In contrast,
the classification performance may be improved

by class mapping as our study would demonstrate.

3. Class Mapping Relation

Australian Bureau of Statistics (2020b)
publishes “ANZSRC 2020 correspondence to
ANZSRC 2008 (Australian Bureau of Statistics,
2020a) that enumerates the class mapping between
ANZSRC 2020 FoR and ANZSRC 2008 FoR. A
correspondence relation is dyadic, meaning that a
class in one scheme corresponds to a single class

in the other scheme. Given the correspondence

relation is denoted as <>, the correspondence
relation is denoted as cls; <> cls;, which means
that class i maps to class j. <> is symmetric that
cls; <= cls; is equivlant to cls; <> cls;. The class
set of the ANZSRC 2008 FoR is denoted as
CS™™% = {cls|Vcls, € FoR2008}. Similarly,
CS™™™ = {cls|Vcls, € FoR2020}. The mapping

. ‘Cslul(’llﬁ)i‘x‘csluI(Z(lE(il . .
matrix MAP €7, is defined as:

MAP,, :{ 1 cls;<>cls; is in the correspondnece table
0 cls;<>cls; is not in the correspondnece table

The mapping relation between classes of
two schemes is derived and categorized with the
mapping matrix. The row sum of the mapping
matrix MAP with respect to cls;, i.e., rowsum(MAP,
i) = 2“1 MAP,,, is the number of FoR2020
classes to which cls; is mapped. The column sum
with respect to cls;, i.e., colsum(MAP, j) = Z\IS]SZI
MAP,;, is the number of FoR2008 classes to
which cls; is mapped. The relation of a class pair
is identified by three conditioned variables: (1)
MAP,;;, (2) rowsum(MAP, i), and (3) colsum(MAP,
J)- The previous studies had identified four kinds
of class relation: (1) equivalence, (2) inclusion,
(3) is about, and (4) union (Dahlberg, 1998; Meo-
Evoli et al., 1998). We rename “is about” to
“overlay” for readability. Since the union relation
can be fully expressed by inclusion relation, union
relation is omitted in Table 1. In addition, the
disjoint relation is appended to describe the non-
mapped type.

The above four kinds of relations are further
simplified into three types of relations by jointly
considering the mapping direction as shown in
Table 2. Three types of class relation are (1) non-
mapped, (2) possibly-mapped, and (3) definitely-
mapped. Our study applies the definitely-mapped

relation to propagating documents’ classification
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Table 1. Four Kinds of Class Relation
Conditioned variables
Kind Denotation
MAP;; rowsum(MAP, i) colsum(MAP, j)
Disjoint Cls; Il Cls; 0 (ANY) (ANY)
Equivalence Cls; = Cls; 1 1 1
Overlap Cls; ® Cls; 1 >1 >1
Inclusion Cls; C Cls, 1 1 >1
Inclusion Cls; D Cls; 1 >1 1
Note. Cls; € CS""™"* Cls; e CS"™"™
Table 2. Three Types of Class Relation
Mapping direction
Type
FoR2008 to FoR2020 FoR2020 to FoR2008
non-mapped Cls; Il Cls; Cls; I Cls;

possibly-mapped

(Cls; ® Cls;) OR (Cls; D Cls))

(Cls; ® Cls;) OR (Cls; C Cls))

definitely-mapped

(Cls; = Cls;) OR (Cls; C Cls))

(Cls;=Cls;) OR (Cls; D Cls)

Note. Cls; € CS""™™, Cls; € CS"™"™

labels from one scheme to the other one. 74%
(802/1,081) of FoR2008 non-miscellaneous field-
level classes are definitely mapped to FoR2020.
On the contrary, 85% (1,499/1,754) of FoR2020
non-miscellaneous field-level classes are
definitely mapped to FoR2008. The definitely-
mapped relation is the only type employed
to augment the datasets. Porter et al. (2023)
discovered that 80% of FoR2008 codes could
be mapped directly to codes of FoR2020. Our
study provides a more accurate ratio with the

operation of the mapping matrix.

4. Research Questions

(1) What quantitative increases are observed
in the number of classes and documents
when transitioning from plain datasets to
mapped datasets?

(2) What is the comparative performance of
traditional machine learning and deep
learning algorithms across the three levels
of the ANZSRC Fields of Research (FoR)
classification scheme?

(3)How does class mapping influence

classification performance metrics?
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5. Method

The bibliographic records containing the
metadata fields of title, abstract, as well as
ANZSRC 2008 FoR or ANZSRC 2020 FoR,
are harvested from eight repositories. The
records are organized and/or mapped through
the correspondence table into four datasets. The
classification algorithms are trialed and presented

with the finest ones in the result section.

5.1 Dataset and mapping

The repositories in Open Access Australasia
(https://oaaustralasia.org/directory-type/
open-repositories/) were examined for the
downloadability of bibliographical records via
OAI-PMH (Open Archives Initiative Protocol
for Metadata Harvesting). Bibliographical
records were downloaded from eight institutional

repositories, which are listed in Table 3, between

July 27th, 2023, and July 31st, 2023. The
documents were selected with the following
criteria: (1) records with explicit codes and names
of the FoR2008 and FoR2020 classes; (2) only the
genre of the dissertation, thesis, conference, and
journal article, as well as the proper description of
an academic book; (3) more than 200 characters of
the cleaned abstract text. The cleaning procedure
removes the irrelated text, such as DOI, funding,
acknowledgment, copyright announcement, and
embargo period.

A document from the plain dataset of one
scheme is incorporated into the mapped dataset of
the other scheme if and only if all classes of that
document are definitely mapped. The following
is the mapping procedure for a document.
The ground truth of a document’s classes is
represented by truth™ " ZZ‘CS'”W' for FoR2008,
or truth”™™ & 7,/ for FoR2020.

Table 3. Harvested Repositories

fetched FoR2008 FoR2020

Institute OAI-PMH URL
records  records  records

Australian National University https://openresearch-repository.anu. 270,902 92,108 4,742
edu.au/oai/request

James Cook University https://researchonline jcu.edu.au/cgi/ 54,681 36,170 17,126
0ai2

Lincoln University https://researcharchive lincoln.ac.nz/ 7432 3,881 848
dspace-oai/request

Massey University https://mro.massey.ac.nz/oai/request 15,691 1,022 1,641

University of Canterbury https://ir.canterbury.ac.nz/oai/request 23,153 3,810 5,555

University of New England https://rune.une.edu.au/uneprodoai/ 31492 26934 17456
request

University of Southern https://eprints.usq.edu.au/cgi/oai2 29,356 0 26571

Queensland
Victoria University https://vuir.vu.edu.au/cgi/oai2 30,985 25,930 3,734
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fruth P — { 1 if the document is labeled with the FoR2008 class k
‘ 0 otherwise

fruth P - { | if the document is labeled with the FoR2020 class k
‘ 0 otherwise

. FoR2020 PR
The mapped vector is mapped " € yA Lor
FoR2 FoR2008 FoR202 FoR2
mapped" 008 — Zz|cs | Let ProR2020 — fry, g, FoR2008

x MAP or lPFoRZOOS — truthF0R2020 x MAPTranpase' If

|CSF =) FoR2020 [Cs e FoR2008
2 k k=1 truth, 1

implies that all FOR2008 classes in that document

equals to X

are definitely-mapped. As a result,

FoR
mappedj 0R2020
. FoR2020
1 if (; > 0) and
- Ic % V)RZUZU‘ FoR2020 — Ic 'SF nRkax‘ truth Fo RZOOS)
( k=1 Wi zk:l K
0 otherwise
mapp e d ?‘0’(’2008
. FoR2008
1 if (¥; > () and
_ (CS™ gy FoR2008 _ (OS] F0R2020)
(Z k=1 Wi Zk:l k
0 otherwise

The dataset pO8 is derived solely from the
truth™®® of all documents, whereas m08

hFoRZOOS dFuR2008 .

incorporates both trut and mappe

thRZO]O

In contrast, p20 is built from trut , while

m?20 uses both fruth” "

and mapped ™. Each
dataset is partitioned into subsets based on three
hierarchical levels. By default, the mapping matrix
MAP is a linear operator that transforms field
classes from FoR2008 to FoR2020. The mapping
matrix can be across the scheme hierarchy. For
example, MAP € ZZ\FoRzoos field classes|x|FoR2020 division classes|
can map a document’s classes from the FoR2008
field level to the FoR2020 division level with
the above mapping procedure. A class may be
possibly-mapped at the field level but definitely-

mapped at the division level. If all of a document’s

classes are definitely mapped at the division level,
the document is included in the division-level
subset of the mapped dataset. The same criterion
applies to the group-level and field-level subsets.

For each dataset, the documents in the field-
level subset must not be labeled with any field-
level miscellaneous, group-level, or division-
level classes. Similarly, the documents in the
group-level subset must not be labeled with any
group-level miscellaneous, or division-level
classes. The field-level miscellaneous classes
are viewed as the group-level classes since we
observed that some documents labeled with
miscellaneous field classes actually refer to the
group classes. Each dataset is split into a training
set containing 80% of documents and a validation
set containing the remaining 20%. All documents
in sparse classes, which contain less than five
documents, are designated to the training set.
Each class containing more than five documents
was iteratively sampled to ensure the percentage
of the documents in the training set ranged from
76% to 84%. To avoid over-sampling the multi-
label documents, the probability of a document to
be sampled in the training set was 1 — (1 — 0.8)"",
where k is the document’s number of classes. The
sampling process proceeds sequentially from the
field level subset to the division level subset to
ensure complete separation between training and
validation sets across all three hierarchical levels.
Consequently, 179,431 documents are organized
into two plain datasets, i.e., p08 and p20, and two
mapped datasets, i.e., m08 and m20.

5.2 Classifier
Classifiers are built using SVM, SciBERT,
and ModernBERT models. Figure 1 illustrates
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Figure 1. Training Approaches

(a) SVM
—_—n I —_—
) TE-IDF Classify Predict
D t tommatize veetor SVM Sclgrrrisl by € 2,/
ocumen  g#.of_voca ER threshold |
—__ [
(b) BERT and variants
vector of [cls| e | - "
Convert vec of 1st token I | Cl if
l,| each vec of 2nd token BERT & I Score abS;' y I Predict
i |class| |class]|
Document token to vec of £ token variants I € [0,1]1c!ess threshold I €17,
its vector € R(t+1)x768 I I
 — — — — —

tis the number of
input tokens

vector of|cls|
vec of 1st token
vec of 2nd token

Classification head I
sigmoid(vector_of _[cls] x head)

vec of t* token
€ R(;H;xemu

Note. The dashed rectangles are finetuned or trained in this study. |class| denotes the number of classes.

the training approaches. Linear kernel SVM are
trained using the Scikit-learn library (https://scikit-
learn.org/). Uncased SciBERT (scibert_scivocab_
uncased), ModernBERT-base, and ModernBERT-
large are downloaded from the Hugging Face
(https://huggingface.com/) and finetuned using
PyTorch 2.5.1 on an NVIDIA RTX A6000. The
model parameters are fully finetuned and only
the first token, [CLS], of the output sequence was
utilized for our downstream classification task,
which was implemented by appending a fully
connected layer and a sigmoid layer to the special
classification token. The dimension of an output
token is 768 for both SciBERT and ModernBERT-
base, and 1,024 for ModernBERT-large. The fine-
tuning process for BERT models was conducted
across varying maximum epochs (1, 2, 4, 8, 16, 24,
or 32) with a batch size of 32, employing binary
cross-entropy as the loss function, AdamW as the
optimizer, and a learning rate of 5e-5. The threshold
of each class is determined by iterating over all
in-class scores in the training set to maximize

the F1 measure of the training set. Classes with

scores exceeding their thresholds are selected as
predictions. If no scores exceed the thresholds, the

class with the highest score is predicted.

6. Result

The initial section covers the preparation task
of organizing the datasets. The second section is the
evaluation of traditional machine learning and deep
learning classifiers. The effect of class size and model

parameter size is presented in the final section.

6.1 Dataset profiling

179431 documents are apportioned into the
four datasets as shown in Table 4. The percentage
of one-class documents ranges from 49.1% (field-
level subset of p20) to 83.5% (division-level
p08). 75.0% (field-level p20) to 98.1% (division-
level p08) of documents are assigned within 2
classes, whereas 97% (field-level p20) to 99.9%
(division-level p08) of documents are assigned
within 3 classes. The plain datasets are augmented

with class mapping, resulting in an expansion
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of both the number of documents and the field-
level classes. When mapping from FoR2020
to FoR2008, 63% (32,589/51,618) of the p20
documents are mapped into 975 FoR2008 classes.
On the contrary, 49% (44,159/89,745) of the p08
documents are mapped into 747 FoR2020 classes.
The field-level classes are most affected by data
insufficiency, with 37 (m08) to 414 (p20) field
classes having too few documents to be sampled
in the validation sets. Figure 2 illustrates that the
1~4 document range contains the highest number
of field classes for both p20 and m20 datasets.
By comparing plain and mapped datasets, the
number of classes containing fewer than 64
documents decreases, while the number of classes
with more than 65 documents becomes enriched.

All 17 newly added classes in the mapped

datasets contain fewer than 16 documents, with
9 classes having less than 5 documents. This
implies that most of the increase in the number
of classes within the validation sets originates
from a combination of plain and mapped sources.
The mean number of documents per field class
increases from 123.7 in p08 to 175.7 in mO8, and
from 57.4 in p20 to 93.0 in m20. The average
document incrementation per mapped class is 58.3
when mapping from FoR2020 to FoR2008, while
it reaches 77.7 when mapping from FoR2008
to FoR2020. The testing set strategy is not
employed since 35.3% (p20) and 30.1% (m20) of
the FoR2020 field classes have less than 10 total
documents. The average document length is 210
words, with a median of 191 words. 4,358 (2%)
documents exceed 512 words. The deep learning

Table 4. Profile of Datasets

Scheme  Dataset Level Number of documents in # of Classes # of Class per
Training set  Validation set Doc.
o Division 98,553 26,600 22 1.19
o
= 08 Group 93,355 23416 135 132
S 2 Field 74,778 14,967 1,066 (955) 147
é% ?? Division 138,637 36,720 22 1.25
37 mos Group 127,601 32,139 135 1.39
< Field 102,197 20,137 1,078 (1,041) 155
o Division 55,877 14512 23 137
o
; o P20 Group 52211 12,922 189 (187) 1.62
== Field 43812 7,806 1,627 (1213) 1.81
é f? Division 118.967 30,150 23 1.27
3T m2o Group 104,321 25474 189 (187) 145
< Field 80,314 15463 1,632 (1,286) 1.59

Note. The number of classes in the validation set is noted in parentheses if it differs from the number of

classes in the training set.
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Figure 2. Datasets Distribution
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models in our setup support up to 512 tokens and
the documents exceeding these token length limits
are truncated. By enriching datasets with class
mapping, the next section evaluates the classifiers

trained on both the plain or mapped datasets.

6.2 Classifier performance

The classification performance of SVM,
SciBERT, ModernBERT-base, and ModernBERT-
large is listed in Table 5. ModernBERT-large
demonstrates superior performance in terms of
validation F1 score across nearly all evaluated
datasets. SVM with TF-IDF representation is
selected for its superior performance compared to
experimented traditional machine learning models,
which are KNN, Logistic Regression, XGBoost,
Linear Classification, Random Forest, Decision
Tree, and Naive Bayes, listed in descending order
performance based on the validation macro F1-
score. SVM outperforms ModernBERT-base at the
field-level subsets. Nevertheless, SVM remains
a practical solution for research classification

for the online database as of 2023 (Porter et al.,

2023). In our experiments, SciBERT performed
comparably to BERT-large at the division and
group level. Furthermore, field-level classifiers
using the original BERT did not demonstrate
notable performance. Garcia-Silva and Gomez-
Perez (2021) employed 5-fold cross-validation
that SciBERT achieved a macro F1 score of 0.838
at the division level, while BERT, SciBERT, and
SVMs achieved scores ranging from 0.808 to 0.911
at the group level classes, whereas fastText and
GPT-2 were left behind. The relatively inferior
macro F1 score in our setting may partly due to
the fact that the bibliographic records are from
eight repositories, and class labeling may not be
inconsistent by various parties. However, SVM
falls behind BERT in our study, highlighting a
methodological concern for studies that train on
the machine-classified records from the online
database. Our experiment exhibits that BERT
variants outperform all other traditional machine
learning methods at the division and group levels.
Arhiliuc et al. (2025) reported a macro F1 score
of 0.70 for BERT and 0.65 for SVM on 42 FORD
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Table 5. Average Precision, Recall, and Macro F1-Score

SVM SciBERT
Level Dataset Precision, recall, F1-score of Precision, recall, F1-score of
Training set Validation set Training set Validation set
pO8 .893 923 908 0661 .677 .668 .803 775 788 727 698 711
Division mO08 864 901 .882 657 .681 .668 796 773 784 725 7708 715
p20 915 933 924 673 .667 .669 999 .999 999 706 710 707
m20 .882 905 .893 686 .686 .685 .802 .787 793 737 720 727
pO8 935 962 948 527 463 481 995 987 991 512 .522 511
m08 912 942 926 535 485 502 998 .996 997 538 .533 .530
Group p20 962 976 969 540 433 471 973 967 968 S14 491 494
m20 935 958 946 530 .449 475 993 983 987 533 508 512
p08 987 995 991 383 278 303 977 966 970 368 .310 318§
Field mO08 979 990 985 394 286 312 945 931 935 365 .320 .325
p20 995 .998 .996 341 244 265 931 918 918 301 247 252
m20 990 .996 993 346 248 271 944 935 933 329 277 284
ModernBERT-base ModernBERT-large
pO8 786 773 778 716 .698 706 793 780 786 723 712 716§
Division mO08 781769 774 722 7708 713 799 7775 785 735 714 723§
p20 7717763 766 709 .695 .701 999 .999 999 720 714 716§
m?20 780 .769 773 729 7710 718 794 787 789 745 727 734§
p08 676 .675 671 501 499 494 593 .624 .602 516 551 .524§
mO08 700 .691 .693 545 512 520 625 .637 .628 545 556 547§
Group p20 .852 956 900 S11 462 474 975 978 976 557 484 507§
m20 983 981 .982 531 480 496 563 .591 569 524 527 518§
pO8 .876 .855 857 331 .292 292 970 978 972 366 .303 314
Fiold mO08 784 748 754 323 .301 .293 799 .804 .795 386 .343 345§
p20 932 915 916 306 251 256 938 .933 930 327 277 279§
m?20 872 .834 840 307 266 267 788 788 769 353 .313 311§

Note. The bold entries suffixed by § are the largest macro F1 score of the validation sets.
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classes, with metrics similar to the division level
metrics in our study. Wu et al. (2023) trained
with 76 to 600 records per division class and
reported accuracy values between 0.60 to 0.70.
In contrast, our study achieves all accuracies
exceeding 0.941. In summary, ModernBERT-]arge
demonstrates superior performance compared
to alternative architectures across the majority
of datasets and hierarchical classification levels,
with the sole exception being the pO8 dataset
where SciBERT maintains a marginal advantage.
The consequence of class mapping using
ModernBERT-large is analyzed in greater detail
in the following sections.

ModernBERT requires fewer or an equivalent
number of epochs to achieve optimal validation F1
scores on mapped datasets compared to their plain
counterparts, potentially reducing overall training

time requirements. Table 6 presents the training

epochs, maximum epoch, and minutes per epoch.
Training epoch duration is primarily influenced
by dataset volume, model architecture, and model
parameter size. As shown in Table 6, the training
time per epoch is proportional to the dataset
volume. When accounting for model architecture,
ModernBERT-base exhibits approximately half
the per-epoch training time of SciBERT despite
having a comparable parameter count. Similarly,
ModernBERT-large achieves nearly a twofold
reduction in training time per epoch compared
to BERT-large. The number of training epochs
is proportional to the number of classes. Lower
levels, which correspond to a greater number of
classes, generally require more training epochs. As
to the total training time, the division and group
subsets of m20, as well as the field subset of mO8,
exhibit fewer total time comparing to their plain

counterparts. While class mapping increases both

Table 6. BERT Training Time and Epoch

SCiBERT (110 Million) M"diﬁgﬁt)'base M(’d‘zg‘g?;‘fw“)' large B]E:;Tél\ir)ge
p08 2m epoch/2.Max. epoch 2/2 (11) 2/2 (27) (61 mins per epoch)
= (20 mins per epoch)

'z m08 2/2 (28) 2/2 (15) 2/2 (39) (86)

E p20 8/8 (11) 2/2(7) 7/8 (16) (34)
m20 2/2 (24) 2/2 (13) 2/2 (33) (73)
p08 12/16 (19) 3/4 (10) 2/2 (25) (57)

5 mo8 13/16 (26) 3/4 (14) 2/2 (35) (78)

L% p20 11/24 (10) 10/16 (6) 6/16 (15) (32)
m20 12/16 (21) 8/24 (12) 2/2 (30) (64)
p08 20/32 (15) 7/24 (8) 8/16 (20) (45)

= mO08 16/32 (21) 6/24 (11) 5/8 (28) (62)

'L::) p20 25/32 (9) 9/32 (5) 8/16 (13) (26)
m20 21/32 (16) 7/16 (9) 6/16 (23) (49)
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dataset size and per-epoch training time, it can,
in some cases, reduce the overall time required to
achieve optimal performance.

Class mapping enhances the validation F1
scores as illustrated in Figure 3. At the division
level, the F1 score improvement between p08 and
mO8 is at most 0.007, whereas the improvement
between p20 and m20 is at least 0.016. This may
be due to the dataset size increasing by 112%
(78,728 documents) in m20, compared to only
a 40% (50,204 documents) increase in m08.
FoR2020, as a newer scheme, has relatively fewer
training documents, which can be supplemented
through class mapping. In contrast, pO8 already
has a sufficient number of documents, making
class mapping less effective in improving
classifier performance. While focusing on the
best-performing model, the validation F1-score
improvements of ModernBERT-large in FoR2008
increased by 1.0%, 4.4%, and 9.9% at division,
group, and field levels respectively. On the
contrary, the enhancements in FoR2020 are 2.5%,
2.2%, and 11.5% respectively.

6.3 Class size and model parameter size

Class size, which is the number of documents
in a class, demonstrates a moderate positive
correlation with the validation F1 score at the field
level. Specifically, Pearson correlation coefficients
are 0.36 for p08, 0.33 for m08, 0.35 for p20, and
0.31 for m20 in the ModernBERT-large model.
This implies that larger document quantities
generally lead to higher performance. Figure 4
illustrates the relationship between class size and
validation F1 scores. Classes containing fewer than
16 documents consistently show extremely poor
performance, with F1 scores predominantly at O,
resulting in both lower and upper quartiles also at 0.
The average F1 score consistently increases with
class size, showing progressive improvement as
class size grows, with the exception of the bucket
exceeding 1,025 documents. The number of
classes exceeding 1,025 documents is rare that 10
classes in p08, 17 in m08, 3 in p20, and 10 in m20.
High-volume classes with Fl-scores below 0.5
are listed in Table 7. Most augmented classes are
improved, except for 050202 and 410406, which

Figure 3. Growth of Validation F1 Score
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Figure 4. Document Size and Validation F1 Score
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Table 7. Validation F1 Scores and Document Counts of Selected High-volume Classes

plain dataset mapped dataset

050209 Natural resource management 0.244 (970) 0.313 (1,269)
410406 Natural resource management 0.311 (483) 0.236 (1,108)
050205 Environmental management 0318 (1,412) 0.296 (1,412)
410404 Environmental management 0.219 (1,047) 0.252 (1.,877)
050202 Conservation and biodiversity 0475 (2,019) 0.401 (2,697)
410401 Conservation and biodiversity 0.393 (1,012) 0.470 (2,288)
130103 Higher education 0.276 (743) 0.425 (1,967)
390303 Higher education 0.447 (1,578) 0.534 (1,914)
160104 Social and cultural anthropology 0.412 (893) 0414 (1,075)
440107 Social and cultural anthropology 0.363 (220) 0.304 (220)
111706 Epidemiology 0.476 (1,647) 0.524 (2,126)
are augmented with worse-performed documents. Class mapping improves the average Fl-

These findings suggest that low-quality data  score not only for the augmented classes but also

can negatively impact model performance. for the non-augmented ones in ModernBERT-

Overall, the validation F1-score tends to increase  large as Table 8 demonstrates. In ModernBERT-

proportionally with the class size.

base, only the F1-scores of the augmented classes
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Table 8. Average F1 Score of Augmented and Non-augmented Classes

P08 mO8 p20 m20
Augmented class 0.292 0.297 0.285 0.308

ModernBERT-base
Non-augmented class 0.217 0.212 0.207 0.204
Augmented class 0.306 0.348 0.303 0.353

ModernBERT-large
Non-augmented class 0.197 0.260 0.207 0.239

showed slight improvements of 0.005 and 0.023,
while the performance of the non-augmented
classes declined by 0.003 and 0.005. In contrast,
ModernBERT-large demonstrated notable gains,
with non-augmented classes improving by 0.063
and 0.032, and augmented classes achieving
increases of 0.042 and 0.050. This suggests that
the model size plays a role in enhancing the
effectiveness of mapping.

The largest groups in Figure 5 are the zero
F1 classes, which continues to impede the
overall performance of field-level classifiers on
validation sets. The larger model exhibits more
zero F1 classes in plain datasets compared to the
base model. However, mapped datasets show a
significant reduction in these zero F1 classes,
particularly when using the large model. Tables
9 and 10 detail the transition of classes between
Fl-score groups by ModernBERT-large. Zero
F1 classes numbered 220 in p08, 287 in mO8,
400 in p20, and 510 in m20. A transition matrix
is defined as 7 € N'*". T;; denotes the number
of classes which are categorized into the group
i of the plain dataset and into the group j of
the mapped dataset. When transitions occur,
the F1 score between 0.4 and 0.5 (7,) serves
as a critical inflection range. Classes with F1

scores below 0.4 predominantly shift to higher

performance groups, as S, T, < 2_;=2k+1Tkv_,-, Vk
< 7, while those with F1 scores exceeding 0.5
predominantly shift to lower performance groups,
as =p| T, > o T,;, Vk > 7. The steady state
derived from the Markov chain analysis, which
is s € R" such that s x U = s, where U, = T,J/ijl
T;; and displayed in the bottom row of the tables,
reveals that the performance group with F1 scores
between 0.4 and 0.5 will emerge as the dominant
category through iterative class mapping process.
Although 25% of the classes in m20 have zero F1
scores, this ratio is expected to decrease to 16%
through additional class mapping. By summing
the products of each steady-state share and the
midpoint of its corresponding range, the estimated
validation F1 score for ModernBERT-large is
0.452 for FoR2008 and 0.363 for FoR2020. Since
FoR2020 is a presently mandated revision that
will incorporate new records, the macro F1 score
is expected to be improved with the increasing

document counts in the future.

7. Conclusion

This study demonstrates the effectiveness
of class mapping as a data fusion technique
to improve machine learning-based research
classification. SVM, SciBERT, ModernBERT-
base, and ModernBERT-large are used to train
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Figure 5. Classes Group by the Validation F1-score
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classifiers for the ANZSRC 2008 FoR (FoR2008)
and ANZSRC 2020 FoR (FoR2020) research
classification schemes across three hierarchical
levels. By leveraging the definitely-mapped
relations between FoR2008 and FoR2020, 63%
of FoR2020 documents are incorporated into
the mapped dataset of FoR2008, while 49%
of FoR2008 documents are integrated into the
mapped dataset of FoR2020. Although the
mapped datasets still contain many low-volume
classes, particularly in FoR2020, class mapping
substantially increases both the number of
documents and the range of represented classes,

supporting improved classifier performance.

Among the evaluated models, ModernBERT-
large consistently delivers strong performance,
particularly on mapped datasets. SVM remains
a practical baseline, offering competitive results
comparable to base-sized BERT variants at
the field level. Porter et al. (2023) introduced
recategorization strategies, including class
mapping, but did not provide empirical validation.
In contrast, our study provides concrete metrics
to evaluate the effectiveness of class mapping,
addressing a gap in the literature where research
classification involving field classes has not been
previously explored (Wu et al., 2021). Consistent

performance gained across all three scheme levels
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Table 9. Transition of Validation F1-score from p08 to m08

208 MO8 Eycluded [0.0] (0,11 (1,2] (2,31 (3,41 (4,51 (5,6] (6,71 (7,81 (8,9] (.9,10] Total
Exclud. 35 58 4 2 9 2 5 3 2 3 123
[0,0] 2 140 5 25 35 18 27 9 14 3 5 4 287
(0..1] 1 3 5 1 1 11
(1,2] 4 19 18 18 10 1 70
(2,3] 4 1 20 30 26 20 13 4 1 119
(3,4] 4 1 9 21 22 39 4 4 104
(4,5] 6 3 18 22 50 31 13 2 145
(5.6] 1 2 3 8 20 40 16 3 93
(6,71 3 1 1 3 2 13 31 12 3 69
(7,81 1 4 8 15 3 31
(8,9] 1 2 3 4 4 14
(9,1.0] 4 1 2 3001 1 12
Total 37 220 12 82 136 121 181 119 98 46 18 8 o8
Share 03 20 01 08 .3 11 17 11 09 04 02 01

Markov 00 05 o1 06 .ar 12 19 18 16 09 02 .00

Table 10. Transition of Validation F1-score from p20 to m20

20 m20 Eycluded [0,0] (0,.1](.1,2] (:2,.3] (.3,4] (4,.5] (.5,.6] (.6,.7] (.7,.8] (.8,9] (9,1.0] Total
Exclud. 334 59 1 1 3 8 1 6 2 4 419
[0,0] 12 279 5 22 60 30 46 10 28 5 5 8 510
(:0,.1] 2 2 1 5
(.1,2] 7 5 11 15 16 9 3 3 1 70
(2,3] 13 4 13 31 18 32 6 2 119
(.3,4] 9 2 8 20 21 26 1 1 100
(4,5] 19 1 9 18 24 52 21 12 2 3 1 162
(.5,.6] 2 4 8 7 16 25 16 3 1 82
(.6,.7] 1 3 10 19 16 17 6 6 2 87
(.7,8] 1 1 3 6 11 6 5 1 34
(.8,9] 2 1 1 6 11 9 32
(9,1.0] 3 2 1 1 2 3 12
Total 346 400 17 71 160 131 214 98 106 38 32 19 1632
Share 21 25 01 04 10 08 .13 06 06 02 02 01

Markov .02 16 01 07 14 13 21 A1 09 03 03 01
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in four models is exhibited by comparisons of
validation F1 scores between plain and mapped
datasets. Class size shows a moderate correlation
with the validation F1 score, and some of classes
are augmented via class mapping. On the contrary,
the performance of non-augmented classes is
also generally improved in ModernBERT-large
but not enhanced in ModernBERT-base. The
advantage of class mapping on non-augmented
classes is the emergent ability, which emerges
only in larger models (Wei et al. 2022). This
study recommends leveraging a larger LLM
in conjunction with class mapping to enhance
the effectiveness of research classification
models. While larger models and more training
data increase the time per epoch, they require
fewer epochs to reach optimal performance and
sometimes reduced total training time. Although
decoder-based Transformer architectures remain
dominant as of 2025, this study advocates for
the development of larger encoder models to
enable more effective research classification in
the future. Inconsistent classification is the most
significant limitation encountered, as it adversely
impacts the performance. For example, Class
130103 Higher Education erroneously includes
articles based solely on studies conducted in
college or university settings, which do not
accurately reflect the intended scope of the class.
This study employs only the definitely-mapped
class relations for dataset augmentation, while
the possibly-mapped relations may be explored
in future work, such as ensemble modeling or

contrastive learning.
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